Skip to main content

You are here

Systems

Microbiology Learning Framework

Society Learning Goals Articles Sample Learning Objectives
Systems
How do microorganisms, cellular and viral, interact with both human and non-human hosts in beneficial, neutral, or detrimental ways?
show
  • State two ways that the normal microbiota are beneficial to a human host.
  • Name two sites on the human body colonized by the normal microbiota, and give an example of the type of organisms found at those sites.
  • Describe at least two innate physical defenses in the human body that are used to fend off an infection.
  • Given a particular pathogen (symbiont), describe how it creates cell damage (benefits) in its host.
  • Compare and contrast commensal, symbiotic, and pathogenic relationships.
  • Explain what adaptations are necessary for a bacterium to survive in the respiratory tract, skin, intestinal tract, or urinary tract.
  • Describe how the human microbiome influences the host human organism.
  • Describe a situation that could lead to the normal microbiota causing disease.
  • Given a human defense, describe a mechanism that would allow a bacterial pathogen to evade it.
How do microorganisms interact with their environment and modify each other?
show
  • List two factors that limit growth in a batch culture.
  • Define the term eutrophication.
  • Choose a perturbation to a novel environment, and predict the change to the resident microbial community.
  • Explain how the presence of a microorganism elicits a cellular or humoral immune response.
  • Discuss an example of host-parasite (e.g., human and microbes, bacteria and phage, etc.) coevolution.
  • Describe how fermentative bacteria in sourdough (or other foods) change their environment, and how that affects the initial community.
  • Explain why the presence of nitrogen-fixing bacteria is often required to support other growth in a diverse ecosystem.
Why do most bacteria in nature live in biofilm communities?
show
  • Give an example of a beneficial and a detrimental biofilm.
  • List the stages of biofilm formation and maturation.
  • Compare and contrast cell structure and function in a biofilm with pelagic cells.
  • Explain how and why biofilm development may differ in different environments.
  • Predict conditions that would favor biofilm formation and where they might be found.
  • Identify the stages of biofilm development that are more susceptible to destruction.
  • Describe differential gene expression in a biofilm.
  • Develop a drug to prevent biofilm formation.
  • Explain the role of biofilms in chronic diseases/infections.
How are microorganisms ubiquitous and live in diverse and dynamic ecosystems?
show
  • List two keystone bacterial guilds in these environments: oligotrophic ocean, marshland soil, and agricultural field (or others).
  • Describe an extreme environment where microbes can survive under conditions that humans cannot.
  • Explain what adaptations have occurred in psychrophiles/thermophiles/halophiles, etc., that permit them to exist in their optimal environmental growth conditions.
  • List the main characteristics of microbes that might be present in a given ecosystem, e.g., the animal gastrointestinal tract, the anaerobic mud layer at the pond bottom, etc.
  • Speculate on what characteristics would be useful for a microbe to survive a move through interplanetary space.
  • Discuss how metagenomics can be a tool to study microbes in situ and/or in extreme environments.

Announcements

No current announcements