Skip to main content

You are here

Filters

Search found 8 items

Search

  • Monarch larvae

    Does it pose a threat? Investigating the impact of Bt corn on monarch butterflies

    Learning Objectives
    Students will be able to:
    • Apply genetics concepts to a relevant case study of Bt corn and monarch butterflies
    • Read figures and text from primary literature
    • Identify claims presented in scientific studies
    • Evaluate data presented in scientific studies
    • Critically reason using data
    • Evaluate the consequences of GM technology on non-target organisms
    • Communicate scientific data orally
  • ACTN3 from https://upload.wikimedia.org/wikipedia/commons/3/33/Protein_ACTN3_PDB_1tjt.png

    The ACTN3 Polymorphism: Applications in Genetics and Physiology Teaching Laboratories

    Learning Objectives
    1. Test hypotheses related to the role of ACTN3 in skeletal muscle function.
    2. Explain how polymorphic variants of the ACTN3 gene affect protein structure and function.
    3. List and explain the differences between fast twitch and slow twitch muscle fibers.
    4. List and explain possible roles of the ACTN3 protein in skeletal muscle function.
    5. Find and analyze relevant scientific publications about the relationship between ACTN3 genotype and muscle function.
    6. Formulate hypotheses related to the relationship between ACTN3 genotype and skeletal muscle function.
    7. Design experiments to test hypotheses about the role of ACTN3 in skeletal muscle function.
    8. Statistically analyze experimental results using relevant software.
    9. Present experimental results in writing.
  • This is a representation of what might happen during peer discussion.

    In-class peer grading of daily quizzes increases feedback opportunities

    Learning Objectives
    Each of these objectives are illustrated with a succinct slide presentation or other supplemental material available ahead of class time through the course administration system. Learners found it particularly helpful to have video clips that remind them of mathematical manipulations available (in the above example objective c). Students understand that foundational objectives tend to be the focus of the quiz (objectives a-d) and that others will be given more time to work on together in class (objectives e-g), but I don't specify this exactly to reduce temptation that 'gamers' take a shortcut that would impact their group work negatively later on. However, the assignment for a focused graded group activity is posted as well, so it is clear what we are working towards; if desired individuals could prepare ahead of the class.
  • ACTN3 from https://upload.wikimedia.org/wikipedia/commons/3/33/Protein_ACTN3_PDB_1tjt.png

    The Science Behind the ACTN3 Polymorphism

    Learning Objectives
    This article accompanies the lesson "The ACTN3 Polymorphism: Applications in Genetics and Physiology Teaching Laboratories." Learning objectives for the lesson include:
    1. Test hypotheses related to the role of ACTN3 in skeletal muscle function.
    2. Explain how polymorphic variants of the ACTN3 gene affect protein structure and function.
    3. List and explain the differences between fast twitch and slow twitch muscle fibers.
    4. List and explain possible roles of the ACTN3 protein in skeletal muscle function.
    5. Find and analyze relevant scientific publications about the relationship between ACTN3 genotype and muscle function.
    6. Formulate hypotheses related to the relationship between ACTN3 genotype and skeletal muscle function.
    7. Design experiments to test hypotheses about the role of ACTN3 in skeletal muscle function.
    8. Statistically analyze experimental results using relevant software.
    9. Present experimental results in writing.
  • Modeling the Research Process: Authentic human physiology research in a large non-majors course

    Learning Objectives
    Students will be able to:
    • Read current scientific literature
    • Formulate testable hypotheses
    • Design an experimental procedure to test their hypothesis
    • Make scientific observations
    • Analyze and interpret data
    • Communicate results visually and orally
  • Sample Student Growth Curve. This image shows a yeast growth curve generated by a student in our lab, superimposed on an image of Saccharomyces cerevisiae cells.

    Using Yeast to Make Scientists: A Six-Week Student-Driven Research Project for the Cell Biology Laboratory

    Learning Objectives
    • Learn about basic S. cerevisiae biology
    • Use sterile technique
    • Perform a yeast viability assay
    • Use a spectrophotometer to measure growth of S. cerevisiae
    • Perform a literature search
    • Calculate concentrations of chemicals appropriate for S. cerevisiae
    • Generate S. cerevisiae growth curves
    • Troubleshoot experimental difficulties
    • Perform statistical analysis
    • Present findings to an audience
  • Building a Model of Tumorigenesis: A small group activity for a cancer biology/cell biology course

    Learning Objectives
    At the end of the activity, students will be able to:
    • Analyze data from a retrospective clinical study uncovering genetic alterations in colorectal cancer.
    • Draw conclusions about human tumorigenesis using data from a retrospective clinical study.
    • Present scientific data in an appropriate and accurate way.
    • Discuss why modeling is an important practice of science.
    • Create a simple model of the genetic changes associated with a particular human cancer.