Skip to main content

You are here

Filters

Search found 60 items

Search

  • Simplified Representation of the Global Carbon Cycle, https://earthobservatory.nasa.gov/Features/CarbonCycle/images/carbon_cycle.jpg

    Promoting Climate Change Literacy for Non-majors: Implementation of an atmospheric carbon dioxide modeling activity as...

    Learning Objectives
    • Students will be able to manipulate and produce data and graphs.
    • Students will be able to design a simple mathematical model of atmospheric CO2 that can be used to make predictions.
    • Students will be able to conduct simulations, analyze, interpret, and draw conclusions about atmospheric CO2 levels from their own computer generated simulated data.
     
  • Student-generated targeting construct from the construct ribbon parts

    Make It Stick: Teaching Gene Targeting with Ribbons and Fasteners

    Learning Objectives
    • Students will be able to design targeting constructs.
    • Students will be able to predict changes to the gene locus after homologous recombination.
    • Students will be able to design experiments to answer a biological question (e.g., "Design an experiment to test if the expression of gene X is necessary for limb development").
  • Monarch larvae

    Does it pose a threat? Investigating the impact of Bt corn on monarch butterflies

    Learning Objectives
    Students will be able to:
    • Apply genetics concepts to a relevant case study of Bt corn and monarch butterflies
    • Read figures and text from primary literature
    • Identify claims presented in scientific studies
    • Evaluate data presented in scientific studies
    • Critically reason using data
    • Evaluate the consequences of GM technology on non-target organisms
    • Communicate scientific data orally
  • Arabidopsis Seedling

    Linking Genotype to Phenotype: The Effect of a Mutation in Gibberellic Acid Production on Plant Germination

    Learning Objectives
    Students will be able to:
    • identify when germination occurs.
    • score germination in the presence and absence of GA to construct graphs of collated class data of wild-type and mutant specimens.
    • identify the genotype of an unknown sample based on the analysis of their graphical data.
    • organize data and perform quantitative data analysis.
    • explain the importance of GA for plant germination.
    • connect the inheritance of a mutation with the observed phenotype.
  • Binding pocket diagram The image suggests that by providing appropriate non-covalent interactions at sites A, B and C, students can create a binding pocket selective for the neurotransmitter molecule serotonin.

    Serotonin in the Pocket: Non-covalent interactions and neurotransmitter binding

    Learning Objectives
    • Students will design a binding site for the neurotransmitter serotonin.
    • Students will be able to determine the effect of a change in molecular orientation on the affinity of the molecule for the binding site.
    • Students will be able to determine the effect of a change in molecular charge on the affinity of the molecule for the binding site.
    • Students will be able to better differentiate between hydrogen bond donors and acceptors.
    • Students can use this knowledge to design binding sites for other metabolites.
  • Ecosystem

    Using Pathway Maps to Link Concepts, Peer Review, Primary Literature Searches and Data Assessment in Large Enrollment...

    Learning Objectives
    • Define basic concepts and terminology of Ecosystem Ecology
    • Link biological processes that affect each other
    • Evaluate whether the link causes a positive, negative, or neutral effect
    • Find primary literature
    • Identify data that correctly supports or refutes an hypothesis
  • Teaching epidemiology and principles of infectious disease using popular media and the case of Typhoid Mary

    Learning Objectives
    Students will be able to:
    • Describe the reservoirs of infection in humans.
    • Distinguish portals of entry and exit.
    • Describe how each of the following contributes to bacterial virulence: adhesins, extracellular enzymes, toxins, and antiphagocytic factors.
    • Define and distinguish etiology and epidemiology.
    • Describe the five typical stages of infectious disease and depict the stages in graphical form.
    • Contrast contact, vehicle and vector transmission, biological and mechanical vectors and identify the mode of transmission in a given scenario.
    • Differentiate endemic, sporadic, epidemic, and pandemic disease.
    • Distinguish descriptive, analytical, and experimental epidemiology.
    • Compare and contrast social, economic, and cultural factors impacting health care in the early 1900s and today.
  • Train tracks, image author: Mitya Ilyinov

    BioMap Degree Plan: A project to guide students in exploring, defining, and building a plan to achieve career goals

    Learning Objectives
    Students will be able to...
    • Identify their values and interests.
    • Identify careers that align with their values and interests.
    • Identify academic programs and co-curricular experiences that will prepare them for a career.
    • Create the first draft of a BioMap Degree Plan to support achievement of their career goals.
    • Articulate how their undergraduate academic experience will prepare them for their future career.
    • Use professional communication skills
  • Plant ecology students surveying vegetation at Red Hills, CA, spring 2012.  From left to right are G.L, F.D, A.M., and R.P.  Photo used with permission from all students.

    Out of Your Seat and on Your Feet! An adaptable course-based research project in plant ecology for advanced students

    Learning Objectives
    Students will:
    • Articulate testable hypotheses. (Lab 8, final presentation/paper, in-class exercises)
    • Analyze data to determine the level of support for articulated hypotheses. (Labs 4-7, final presentation/paper)
    • Identify multiple species of plants in the field quickly and accurately. (Labs 2-3, field trip)
    • Measure environmental variables and sample vegetation in the field. (Labs 2-3, field trip)
    • Analyze soil samples using a variety of low-tech lab techniques. (Open labs after field trip)
    • Use multiple statistical techniques to analyze data for patterns. (Labs 4-8, final presentation/paper)
    • Interpret statistical analyses to distinguish between strong and weak interactions in a biological system. (Labs 4-7, final presentation/paper)
    • Develop and present a conference-style presentation in a public forum. (Lab 8, final presentation/paper)
    • Write a publication-ready research paper communicating findings and displaying data. (Lab 8, final presentation/paper)
  • Playon Words Title Screen

    Using Gamification to Teach Undergraduate Students about Scientific Writing

    Learning Objectives
    Topics within Playon Words are grouped into “mini-games.” The Learning Objectives for each mini-game are as follows: Sentence Sensei
    • Identify the best sentence variant from a list of options
    • Identify and eliminate needless words
    • Identify where and when to use different types of punctuation marks
    • Identify and correct common grammar mistakes
    Organization Optimizer
    • Organize sentences in a logical order
    • Describe the components of different sections of a scientific paper
    • Identify the section of a scientific paper where a given sentence belongs
    • Eliminate sentences which do not belong in a given writing sample
    Science Officer Training
    • Classify statements as scientific or non-scientific
    • Identify which statements support a particular hypothesis or position
    • Classify provided sentences (e.g. hypotheses vs. predictions, problems vs. experiments, results vs. discussion)
    Reference Referee
    • Compare and contrast different types (e.g. primary literature, review articles, popular literature etc.) and sources (PubMed, Web of Science, Google Scholar etc.) of scientific information
    • Identify locations in texts where citations are needed
    • Identify citations and/or references that are incorrect or missing key information
    • Identify information that does not belong in the reference list (e.g. vendor information)
  • A A student assists Colorado Parks & Wildlife employees spawning greenback cutthroat trout at the Leadville National Fish Hatchery; B greenback cutthroat trout adults in a hatchery raceway; C tissue samples collected by students to be used for genetic analysis (images taken by S. Love Stowell)

    Cutthroat trout in Colorado: A case study connecting evolution and conservation

    Learning Objectives
    Students will be able to:
    • interpret figures such as maps, phylogenies, STRUCTURE plots, and networks for species delimitation
    • identify sources of uncertainty and disagreement in real data sets
    • propose research to address or remedy uncertainty
    • construct an evidence-based argument for the management of a rare taxon
  • Medical students at a fair. Credit: Danieladelrio

    Casting a Wide Net via Case Studies: Educating across the undergraduate to medical school continuum in the biological...

    Learning Objectives
    At the end of this lesson, the student should be able to:
    • Consider the potential advantages and disadvantages of widespread use of whole genome sequencing and direct-to-consumer genetic testing.
    • Explore the critical need to maintain privacy of individual genetic test results to protect patient interests.
    • Dissect the nuances of reporting whole genome sequencing results.
    • Recognize the economic ramifications of precision medicine strategies.
    • Formulate a deeper understanding of the ethical dimensions of emerging genetic testing technologies.
  • Building a Model of Tumorigenesis: A small group activity for a cancer biology/cell biology course

    Learning Objectives
    At the end of the activity, students will be able to:
    • Analyze data from a retrospective clinical study uncovering genetic alterations in colorectal cancer.
    • Draw conclusions about human tumorigenesis using data from a retrospective clinical study.
    • Present scientific data in an appropriate and accurate way.
    • Discuss why modeling is an important practice of science.
    • Create a simple model of the genetic changes associated with a particular human cancer.
  • Society Logos with statement "At the end of my course students should be able to..."
  • Human karyotype

    Homologous chromosomes? Exploring human sex chromosomes, sex determination and sex reversal using bioinformatics...

    Learning Objectives
    Students successfully completing this lesson will:
    • Practice navigating an online bioinformatics resource and identify evidence relevant to solving investigation questions
    • Contrast the array of genes expected on homologous autosomal chromosomes pairs with the array of genes expected on sex chromosome pairs
    • Use bioinformatics evidence to defend the definition of homologous chromosomes
    • Define chromosomal sex and defend the definition using experimental data
    • Investigate the genetic basis of human chromosomal sex determination
    • Identify at least two genetic mutations can lead to sex reversal
  • Phylogeny of HIV1 pol genes sequenced anonymously from viral pools of six victims and the defendant (CCO1-CCO7), plus control samples. Used with permission from Proceedings of the National Academy of Sciences of the United States of America.

    Forensic Phylogenetics: Implementing Tree-thinking in a Court of Law

    Learning Objectives
     
    • Students will be able to infer the topological and temporal relationships expected in an evolutionary tree (phylogeny) of a pathogen in the case of transmission from one host to the next.
    • Students will be able to draw trees representing the transmission events from one host (patient zero) to multiple secondary patients.
  • Structure of protein ABCB6

    Investigating the Function of a Transport Protein: Where is ABCB6 Located in Human Cells?

    Learning Objectives
    At the end of this activity students will be able to:
    • describe the use of two common research techniques for studying proteins: SDS-PAGE and immunoblot analysis.
    • determine a protein’s subcellular location based on results from: 1) immunoblotting after differential centrifugation, and 2) immunofluorescence microscopy.
    • analyze protein localization data based on the limitations of differential centrifugation and immunofluorescence microscopy.
  • Confocal microscope image of a mouse egg that is arrested at metaphase of meiosis II. Green, tubulin staining of meiotic spindle; red, actin staining of egg membrane; blue, DNA. This image was obtained on a Zeiss 510 Meta confocal microscope in the Department of Genetics at Rutgers University

    Sex-specific differences in Meiosis: Real-world applications

    Learning Objectives
    After completion of the lesson students will be able to:
    1. Describe the differences between female and male meiosis.
    2. Interpret graphical data to make decisions relevant to medical practices.
    3. Develop a hypothesis that explains the difference in incidence of aneuploidy in gametes between males and females.
  • Students engaged in building the PCR model

    A Close-Up Look at PCR

    Learning Objectives
    At the end of this lesson students will be able to...
    • Describe the role of a primer in PCR
    • Predict sequence and length of PCR product based on primer sequences
    • Recognize that primers are incorporated into the final PCR products and explain why
    • Identify covalent and hydrogen bonds formed and broken during PCR
    • Predict the structure of PCR products after each cycle of the reaction
    • Explain why amplification proceeds exponentially
  • Structure of protein ADA2

    Understanding Protein Domains: A Modular Approach

    Learning Objectives
    • Students will be able to compare protein sequences and identify conserved regions and putative domains.
    • Students will be able to obtain, examine, and compare structural models of protein domains.
    • Students will be able to interpret data on protein interactions (in vitro pull-down and in vitro and in vivo functional assays)
    • Students will be able to propose experiments to test protein interactions.
  • Evaluating the Quick Fix: Weight Loss Drugs and Cellular Respiration Image File: QuickFixPrimImage.tiff Sources for images: Balance: Public Domain CCO http://www.pd4pic.com/scales-justice-scale-libra-balance-weighbridge.html Mitochondria: https://thumb7.shutterstock.com/thumb_large/1503584/235472731/stock-vector-mitochondrion-235472731.jpg Pills: https://pixabay.com/static/uploads/photo/2014/07/05/15/16/pills-384846_960_720.jpg

    Evaluating the Quick Fix: Weight Loss Drugs and Cellular Respiration

    Learning Objectives
    • Students will be able to explain how the energy from sugars is transformed into ATP via cellular respiration.
    • Students will be able to predict an outcome if there is a perturbation in the cellular respiration pathway.
    • Students will be able to state and evaluate a hypothesis.
    • Students will be able to interpret data from a graph, and use that data to make inferences about the action of a drug.
  • Sliced vegan no-knead whole what bread loaf” by Veganbaking.net is licensed under CC BY-SA 2.0
  • Using Place-Based Economically Relevant Organisms to Improve Student Understanding of the Roles of Carbon Dioxide,...

    Learning Objectives
    At the end of this lesson, students will be able to:
    • Describe the roles of light energy and carbon dioxide in photosynthetic organisms.
    • Identify the effect of nutrients on the growth of photosynthetic organisms.
    • Describe global cycles in atmospheric carbon dioxide levels and how they relate to photosynthetic organisms.
  • An active-learning lesson that targets student understanding of population growth in ecology

    Learning Objectives
    Students will be able to:
    • Calculate and compare population density and abundance.
    • Identify whether a growth curve describes exponential, linear, and/or logistic growth.
    • Describe and calculate a population's growth rate using linear, exponential, and logistic models.
    • Explain the influence of carrying capacity and population density on growth rate.
  • Double-stranded, supercoiled yarn. Intertwined, supercoiled, and double-stranded yarn, representing chromosomal template DNA, with a section marked with black stripes to represent the DNA fragment for modeling PCR fundamentals.

    A Kinesthetic Modeling Activity to Teach PCR Fundamentals

    Learning Objectives
    Students will be able to:
    • Draw or model the first three cycles of PCR, including the correct directionality (5’- and 3’-ends) of the primers and single-stranded PCR products.
    • Diagram how single-stranded products from the first cycle of PCR are used as templates for subsequent PCR cycles.
    • Demonstrate which parts of the primers will anneal to the original DNA template and subsequent PCR products.
    • Model and demonstrate when the primer restriction enzyme sites are incorporated into double-stranded PCR products.
    • Calculate the number of desired-length PCR products and long PCR products for each amplification cycle.
    • Demonstrate how the incorporation of primer restriction enzyme sites into PCR products is a useful tool for subsequent cloning of the product into a vector.
  • Students preforming the leaky neuron activity.

    The Leaky Neuron: Understanding synaptic integration using an analogy involving leaky cups

    Learning Objectives
    Students will able to:
    • compare and contrast spatial and temporal summation in terms of the number of presynaptic events and the timing of these events
    • predict the relative contribution to reaching threshold and firing an action potential as a function of distance from the axon hillock
    • predict how the frequency of incoming presynaptic action potentials effects the success of temporal summation of resultant postsynaptic potentials
  • The Roc is a mythical giant bird of prey, first conceived during the Islamic Golden Age (~8th to 13th centuries CE), popularized in folk tales gathered in One Thousand One Nights. Rocs figured prominently in tales of Sinbad the Sailor. In this 1898 illustration by René Bull, the Roc is harassing two of Sinbad’s small fleet of ships. Illustration by René Bull is licensed under CC BY 2.0. (Source: https://en.wikipedia.org/wiki/Roc_(mythology)#mediaviewer/File:Rocweb.jpg)

    A first lesson in mathematical modeling for biologists: Rocs

    Learning Objectives
    • Systematically develop a functioning, discrete, single-species model of an exponentially-growing or -declining population.
    • Use the model to recommend appropriate action for population management.
    • Communicate model output and recommendations to non-expert audiences.
    • Generate a collaborative work product that most individuals could not generate on their own, given time and resource constraints.
  • This is a representation of what might happen during peer discussion.

    In-class peer grading of daily quizzes increases feedback opportunities

    Learning Objectives
    Each of these objectives are illustrated with a succinct slide presentation or other supplemental material available ahead of class time through the course administration system. Learners found it particularly helpful to have video clips that remind them of mathematical manipulations available (in the above example objective c). Students understand that foundational objectives tend to be the focus of the quiz (objectives a-d) and that others will be given more time to work on together in class (objectives e-g), but I don't specify this exactly to reduce temptation that 'gamers' take a shortcut that would impact their group work negatively later on. However, the assignment for a focused graded group activity is posted as well, so it is clear what we are working towards; if desired individuals could prepare ahead of the class.
  • 3D Print Models: A collection of 3D models printed from online repository files.
  • American coot (Fulica Americana) family at the Cloisters City Park pond in Morrow Bay, CA. "Mike" Michael L. Baird [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons, https://upload.wikimedia.org/wikipedia/commons/d/db/Fulica_americana3.jpg

    Knowing your own: A classroom case study using the scientific method to investigate how birds learn to recognize their...

    Learning Objectives
    • Students will be able to identify and describe the steps of the scientific method.
    • Students will be able to develop hypotheses and predictions.
    • Students will be able to construct and interpret bar graphs based on data and predictions.
    • Students will be able to draw conclusions from data presented in graphical form.
  • Teaching Genetic Linkage and Recombination through Mapping with Molecular Markers

    Learning Objectives
    Students will be able to:
    • Explain how recombination can lead to new combinations of linked alleles.
    • Explain how molecular markers (such as microsatellites) can be used to map the location of genes/loci, including what crosses would be informative and why.
    • Explain how banding patterns on an electrophoresis gel represent the segregation of alleles during meiosis.
    • Predict how recombination frequency between two linked loci affects the genotype frequencies of the products of meiosis compared to loci that are unlinked (or very tightly linked).
    • Analyze data from a cross (phenotypes and/or genotypes) to determine if the cross involves linked genes.
    • Calculate the map distance between linked genes using data from genetic crosses, such as gel electrophoresis banding patterns.
    • Justify conclusions about genetic linkage by describing the information in the data that allows you to determine genes are linked.
  • Image from a clicker-based case study on muscular dystrophy and the effect of mutations on the processes in the central dogma.

    A clicker-based case study that untangles student thinking about the processes in the central dogma

    Learning Objectives
    Students will be able to:
    • explain the differences between silent (no change in the resulting amino acid sequence), missense (a change in the amino acid sequence), and nonsense (a change resulting in a premature stop codon) mutations.
    • differentiate between how information is encoded during DNA replication, transcription, and translation.
    • evaluate how different types of mutations (silent, missense, and nonsense) and the location of those mutations (intron, exon, and promoter) differentially affect the processes in the central dogma.
    • predict the molecular (DNA size, mRNA length, mRNA abundance, and protein length) and/or phenotypic consequences of mutations.
  • Image from http://www.epa.gov/airdata/ad_maps.html

    Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues

    Learning Objectives
    Students will be able to:
    • Describe various parameters of air quality that can negatively impact human health, list priority air pollutants, and interpret the EPA Air Quality Index as it relates to human health.
    • Identify an air quality problem that varies on spatial and/or temporal scales that can be addressed using publicly available U.S. EPA air data.
    • Collect appropriate U.S. EPA Airdata information needed to answer that/those questions, using the U.S. EPA Airdata website data mining tools.
    • Analyze the data as needed to address or answer their question(s).
    • Interpret data and draw conclusions regarding air quality levels and/or impacts on human and public health.
    • Communicate results in the form of a scientific paper.
  • A tuco-tuco in South America (photo credit: Jeremy Hsu)

    Furry with a chance of evolution: Exploring genetic drift with tuco-tucos

    Learning Objectives
    • Students will be able to explain how genetic drift leads to allelic changes over generations.
    • Students will be able to demonstrate that sampling error can affect every generation, which can result in random changes in allelic frequency.
    • Students will be able to explore and evaluate the effect of population size on the strength of genetic drift.
    • Students will be able to analyze quantitative data associated with genetic drift.
  • Students using the Understanding Eukaryotic Genes curriculum to construct a gene model. Students are working as a pair to complete each Module using classroom computers.

    An undergraduate bioinformatics curriculum that teaches eukaryotic gene structure

    Learning Objectives
    Module 1
    • Demonstrate basic skills in using the UCSC Genome Browser to navigate to a genomic region and to control the display settings for different evidence tracks.
    • Explain the relationships among DNA, pre-mRNA, mRNA, and protein.
    Module 2
    • Describe how a primary transcript (pre-mRNA) can be synthesized using a DNA molecule as the template.
    • Explain the importance of the 5' and 3' regions of the gene for initiation and termination of transcription by RNA polymerase II.
    • Identify the beginning and the end of a transcript using the capabilities of the genome browser.
    Module 3
    • Explain how the primary transcript generated by RNA polymerase II is processed to become a mature mRNA, using the sequence signals identified in Module 2.
    • Use the genome browser to analyze the relationships among:
    • pre-mRNA
    • 5' capping
    • 3' polyadenylation
    • splicing
    • mRNA
    Module 4
    • Identify splice donor and acceptor sites that are best supported by RNA-Seq data and TopHat splice junction predictions.
    • Utilize the canonical splice donor and splice acceptor sequences to identify intron-exon boundaries.
    Module 5
    • Determine the codons for specific amino acids and identify reading frames by examining the Base Position track in the genome browser.
    • Assemble exons to maintain the open reading frame (ORF) for a given gene.
    • Define the phases of the splice donor and acceptor sites and describe how they impact the maintenance of the ORF.
    • Identify the start and stop codons of an assembled ORF.
    Module 6
    • Demonstrate how alternative splicing of a gene can lead to different mRNAs.
    • Show how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.
  • Reprinted by permission from Macmillan Publishers Ltd.

    A Hands-on Introduction to Hidden Markov Models

    Learning Objectives
    • Students will be able to process unannotated genomic data using ab initio gene finders as well as other inputs.
    • Students will be able to defend the proposed gene annotation.
    • Students will reflect on the other uses for HMMs.
  • Students participating in the peer review process. Practicing the writing of scientific manuscripts prepares students to understand and engage in the primary literature they encounter.
  • photo credit John Friedlein. Author (SRB) helps a student troubleshooting RStudio in the workshop session of class.
  • “The outcome of the Central Dogma is not always intuitive” Variation in gene size does not necessarily correlate with variation in protein size. Here, two related genes differ in length due to a deletion mutation that removes four nucleotides. Many students do not predict that the smaller gene, after transcription and translation, would produce a larger protein.

    Predicting and classifying effects of insertion and deletion mutations on protein coding regions

    Learning Objectives
    Students will be able to:
    • accurately predict effects of frameshift mutations in protein coding regions
    • conduct statistical analysis to compare expected and observed values
    • become familiar with accessing and using DNA sequence databases and analysis tools
  • Memory Helper is an illustration of a made up dietary supplement. Because the supplement is named Memory Helper, and because a picture of a brain is placed on the label, consumers might believe that the supplement is a memory aid. We add the footnote “tested?” to suggest that consumers should take a closer look.

    Bad Science: Exploring the unethical research behind a putative memory supplement

    Learning Objectives
    Students will be able to:
    • create criteria for evaluating information that is touted as scientific.
    • apply those criteria to evaluate the claim that Prevagen® enhances memory.
    • identify the misleading tactics used on the Prevagen® website and in their self-published reporting.
    • decide whether to recommend taking Prevagen® and explain their decisions.
  • A crossbill feeds on a pinecone

    Coevolution or not? Crossbills, squirrels and pinecones

    Learning Objectives
    1. Define coevolution.
    2. Identify types of evidence that would help determine whether two species are currently in a coevolutionary relationship.
    3. Interpret graphs.
    4. Evaluate evidence about whether two species are coevolving and use evidence to make a scientific argument.
    5. Describe what evidence of a coevolutionary relationship might look like.
    6. Distinguish between coadaptation and coevolution.
  • Figure 2. ICB-Students come to class prepared to discuss the text
  • Students use plastic Easter eggs and chocolate pieces to simulate the distribution of HIV in T lymphocytes.

    Infectious Chocolate Joy with a Side of Poissonian Statistics: An activity connecting life science students with subtle...

    Learning Objectives
    • Students will define a Poisson distribution.
    • Students will generate a data set on the probability of a T cell being infected with a virus(es).
    • Students will predict the likelihood of one observing the mean value of viruses occurring.
    • Students will evaluate the outcomes of a random process.
    • Students will hypothesize whether a process is Poissonian and design a test for that hypothesis.
    • Students will collect data and create a histogram from their data.
  • “Phenology of a Dawn Redwood” – Images collected by students for this lesson pieced together illustrating a Metasequoia glyptostroboides changing color and dropping its leaves in the fall of 2017 on Michigan State University campus.

    Quantifying and Visualizing Campus Tree Phenology

    Learning Objectives
    The Learning Objectives of this lesson span across the entire semester.
    • Observe and collect information on phenological changes in local trees.
    • Become familiar with a database and how to work with large datasets.
    • Analyze and visualize data from the database to test their hypotheses and questions.
    • Develop a research proposal including empirically-driven questions and hypotheses.
    • Synthesize the results of their analysis in the context of plant biodiversity and local environmental conditions.
  • How Silly Putty® is like bone

    What do Bone and Silly Putty® have in Common?: A Lesson on Bone Viscoelasticity

    Learning Objectives
    • Students will be able to explain how the anatomical structure of long bones relates to their function.
    • Students will be able to define viscoelasticity, hysteresis, anisotropy, stiffness, strength, ductility, and toughness.
    • Students will be able to identify the elastic and plastic regions of a stress-strain curve. They will be able to correlate each phase of the stress-strain curve with physical changes to bone.
    • Students will be able to predict how a bone would respond to changes in the magnitude of an applied force, and to variations in the speed or angle at which a force is applied.
    • Students will be able to determine the reason(s) why bone injuries occur more frequently during athletic events than during normal everyday use.
  • A pair of homologous chromosomes.

    Meiosis: A Play in Three Acts, Starring DNA Sequence

    Learning Objectives
    • Students will be able to identify sister chromatids and homologous chromosomes at different stages of meiosis.
    • Students will be able to identify haploid and diploid cells, whether or not the chromosomes are replicated.
    • Students will be able to explain why homologous chromosomes must pair during meiosis.
    • Students will be able to relate DNA sequence similarity to chromosomal structures.
    • Students will be able to identify crossing over as the key to proper pairing of homologous chromosomes during meiosis.
    • Students will be able to predict the outcomes of meiosis for a particular individual or cell.
  • In small groups students brainstorm a list of responses to the prompt and then exchange their lists with another group to circle sex characteristics and star gender characteristics.  The image has whiteboards completed by students.

    Sex and gender: What does it mean to be female or male?

    Learning Objectives
    • Students will be able to distinguish between sex and gender, and apply each term appropriately.
    • Students will be able to compare and contrast levels of sexual determination.
    • Students will be able to critique societal misrepresentations surrounding sex, gender, and gender identity.
  • Using the Cell Engineer/Detective Approach to Explore Cell Structure and Function

    Learning Objectives
    Students will be able to:
    • Identify the major cell organelles
    • List the major functions of the organelles
    • Predict how changes in organelle/cell structure could alter cellular function
    • Explain how overall cellular function is dependent upon organelles/cell structure
    • Relate cell structure to everyday contexts

Pages