Skip to main content

You are here

Filters

Search found 10 items

Search

  • Students participating in the peer review process. Practicing the writing of scientific manuscripts prepares students to understand and engage in the primary literature they encounter.
  • Fully annotated mitochondrial genome of a lichenized fungal species (Cladonia subtenuis).  This represents a visual representation of the final project result of the lesson plan. Students will submit their annotation to NCBI (GenBank) and upon acceptance of their annotation, they typically add this publicly available resource into their resume.

    A CURE-based approach to teaching genomics using mitochondrial genomes

    Learning Objectives
    • Install the appropriate programs such as Putty and WinSCP.
    • Navigate NCBI's website including their different BLAST programs (e.g., blastn, tblastx, blastp and blastx)
    • Use command-line BLAST to identify mitochondrial contigs within a whole genome assembly
    • Filter the desired sequence (using grep) and move the assembled mitochondrial genome onto your own computer (using FTP or SCP)
    • Error-correct contigs (bwa mem, samtools tview), connect and circularize organellar contigs (extending from filtered reads)
    • Transform assembled sequences into annotated genomes
    • Orient to canonical start locations in the mitochondrial genome (cox1)
    • Identify the boundaries of all coding components of the mitochondrial genome using BLAST, including: Protein coding genes (BLASTx and tBLASTX), tRNAs (proprietary programs such as tRNAscan), rRNAs (BLASTn, Chlorobox), ORFs (NCBI's ORFFinder)
    • Deposit annotation onto genome repository (NCBI)
    • Update CV/resume to reflect bioinformatics skills learned in this lesson
  • Possible implementations of a short research module

    A Short Laboratory Module to Help Infuse Metacognition during an Introductory Course-based Research Experience

    Learning Objectives
    • Students will be able to evaluate the strengths and weaknesses of data.
    • Students will be able to employ prior knowledge in formulating a biological research question or hypothesis.
    • Students will be able to distinguish a research question from a testable hypothesis.
    • Students will recognize that the following are essential elements in experimental design: identifying gaps in prior knowledge, picking an appropriate approach (ex. experimental tools and controls) for testing a hypothesis, and reproducibility and repeatability.
    • Students will be able to identify appropriate experimental tools, approaches and controls to use in testing a hypothesis.
    • Students will be able to accurately explain why an experimental approach they have selected is a good choice for testing a particular hypothesis.
    • Students will be able to discuss whether experimental outcomes support or fail to support a particular hypothesis, and in the case of the latter, discuss possible reasons why.
  • This is a representation of what might happen during peer discussion.

    In-class peer grading of daily quizzes increases feedback opportunities

    Learning Objectives
    Each of these objectives are illustrated with a succinct slide presentation or other supplemental material available ahead of class time through the course administration system. Learners found it particularly helpful to have video clips that remind them of mathematical manipulations available (in the above example objective c). Students understand that foundational objectives tend to be the focus of the quiz (objectives a-d) and that others will be given more time to work on together in class (objectives e-g), but I don't specify this exactly to reduce temptation that 'gamers' take a shortcut that would impact their group work negatively later on. However, the assignment for a focused graded group activity is posted as well, so it is clear what we are working towards; if desired individuals could prepare ahead of the class.
  • photo credit John Friedlein. Author (SRB) helps a student troubleshooting RStudio in the workshop session of class.
  • Plant ecology students surveying vegetation at Red Hills, CA, spring 2012.  From left to right are G.L, F.D, A.M., and R.P.  Photo used with permission from all students.

    Out of Your Seat and on Your Feet! An adaptable course-based research project in plant ecology for advanced students

    Learning Objectives
    Students will:
    • Articulate testable hypotheses. (Lab 8, final presentation/paper, in-class exercises)
    • Analyze data to determine the level of support for articulated hypotheses. (Labs 4-7, final presentation/paper)
    • Identify multiple species of plants in the field quickly and accurately. (Labs 2-3, field trip)
    • Measure environmental variables and sample vegetation in the field. (Labs 2-3, field trip)
    • Analyze soil samples using a variety of low-tech lab techniques. (Open labs after field trip)
    • Use multiple statistical techniques to analyze data for patterns. (Labs 4-8, final presentation/paper)
    • Interpret statistical analyses to distinguish between strong and weak interactions in a biological system. (Labs 4-7, final presentation/paper)
    • Develop and present a conference-style presentation in a public forum. (Lab 8, final presentation/paper)
    • Write a publication-ready research paper communicating findings and displaying data. (Lab 8, final presentation/paper)
  • Aldh1a2 expression in Stage 33 Xenopus laevis embryo: In this lab exercise, students visualize differential gene expression in Xenopus embryos using in situ hybridization.

    Differential Gene Expression during Xenopus laevis Development

    Learning Objectives
    Students will be able to:
    • identify different stages of Xenopus development
    • contrast the strengths and limitations of the Xenopus model organism
    • explain the process and purpose of in situ hybridization
    • compare gene expression patterns from different germ layers or organ domains
    • compare gene expression patterns from different developmental stages
  • DNA barcoding research in first-year biology curriculum

    CURE-all: Large Scale Implementation of Authentic DNA Barcoding Research into First-Year Biology Curriculum

    Learning Objectives
    Students will be able to: Week 1-4: Fundamentals of Science and Biology
    • List the major processes involved in scientific discovery
    • List the different types of scientific studies and which types can establish causation
    • Design experiments with appropriate controls
    • Create and evaluate phylogenetic trees
    • Define taxonomy and phylogeny and explain their relationship to each other
    • Explain DNA sequence divergence and how it applies to evolutionary relationships and DNA barcoding
    Week 5-6: Ecology
    • Define and measure biodiversity and explain its importance
    • Catalog organisms using the morphospecies concept
    • Geographically map organisms using smartphones and an online mapping program
    • Calculate metrics of species diversity using spreadsheet software
    • Use spreadsheet software to quantify and graph biodiversity at forest edges vs. interiors
    • Write a formal lab report
    Week 7-11: Cellular and Molecular Biology
    • Extract, amplify, visualize and sequence DNA using standard molecular techniques (PCR, gel electrophoresis, Sanger sequencing)
    • Explain how DNA extraction, PCR, gel electrophoresis, and Sanger sequencing work at the molecular level
    Week 12-13: Bioinformatics
    • Trim and assemble raw DNA sequence data
    • Taxonomically identify DNA sequences isolated from unknown organisms using BLAST
    • Visualize sequence data relationships using sequence alignments and gene-based phylogenetic trees
    • Map and report data in a publicly available online database
    • Share data in a formal scientific poster
  • Adult female Daphnia dentifera. Daphnia spp. make a great study system due to their transparent body and their ease of upkeep in a lab.

    Dynamic Daphnia: An inquiry-based research experience in ecology that teaches the scientific process to first-year...

    Learning Objectives
    Students will be able to:
    • Construct written predictions about 1 factor experiments.
    • Interpret simple (2 variables) figures.
    • Construct simple (2 variables) figures from data.
    • Design simple 1 factor experiments with appropriate controls.
    • Demonstrate proper use of standard laboratory items, including a two-stop pipette, stereomicroscope, and laboratory notebook.
    • Calculate means and standard deviations.
    • Given some scaffolding (instructions), select the correct statistical test for a data set, be able to run a t-test, ANOVA, chi-squared test, and linear regression in Microsoft Excel, and be able to correctly interpret their results.
    • Construct and present a scientific poster.
  • Using QIIME to Interpret Environmental Microbial Communities in an Upper Level Metagenomics Course

    Learning Objectives
    Students will be able to:
    • list and perform the steps of sequence processing and taxonomic inference.
    • interpret microbial community diversity from metagenomic sequence datasets.
    • compare microbial diversity within and between samples or treatments.