Skip to main content

You are here

Filters

Search found 9 items

Search

  • SNP model by David Eccles (gringer) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY 4.0 (http://creativecommons.org/licenses/by/4.0)], via Wikimedia Commons

    Exploration of the Human Genome by Investigation of Personalized SNPs

    Learning Objectives
    Students successfully completing this lesson will be able to:
    • Effectively use the bioinformatics databases (SNPedia, the UCSC Genome Browser, and NCBI) to explore SNPs of interest within the human genome.
    • Identify three health-related SNPs of personal interest and use the UCSC Genome Browser to define their precise chromosomal locations and determine whether they lie within a gene or are intergenic.
    • Establish a list of all genome-wide association studies correlated with a particular health-related SNP.
    • Predict which model organism would be most appropriate for conducting further research on a human disease.
  • Multiple sequence alignment of homologous cytochrome C protein sequences using Jalview viewer.

    Sequence Similarity: An inquiry based and "under the hood" approach for incorporating molecular sequence...

    Learning Objectives
    At the end of this lesson, students will be able to:
    • Define similarity in a non-biological and biological sense when provided with two strings of letters.
    • Quantify the similarity between two gene/protein sequences.
    • Explain how a substitution matrix is used to quantify similarity.
    • Calculate amino acid similarity scores using a scoring matrix.
    • Demonstrate how to access genomic data (e.g., from NCBI nucleotide and protein databases).
    • Demonstrate how to use bioinformatics tools to analyze genomic data (e.g., BLASTP), explain a simplified BLAST search algorithm including how similarity is used to perform a BLAST search, and how to evaluate the results of a BLAST search.
    • Create a nearest-neighbor distance matrix.
    • Create a multiple sequence alignment using a nearest-neighbor distance matrix and a phylogram based on similarity of amino acid sequences.
    • Use appropriate bioinformatics sequence alignment tools to investigate a biological question.
  • Strawberries

    The Case of the Missing Strawberries: RFLP analysis

    Learning Objectives
    Students will be able to:
    • Describe the relationship of cells, chromosomes, and DNA.
    • Isolate DNA from strawberries.
    • Digest DNA with restriction enzymes.
    • Perform gel electrophoresis.
    • Design an experiment to compare DNAs by RFLP analysis.
    • Predict results of RFLP analysis.
    • Interpret results of RFLP analysis.
    • Use appropriate safety procedures in the lab.
  • Bacteria growing on petri dish

    You and Your Oral Microflora: Introducing non-biology majors to their “forgotten organ”

    Learning Objectives
    Students will be able to:
    • Explain both beneficial and detrimental roles of microbes in human health.
    • Compare and contrast DNA replication as it occurs inside a cell versus in a test tube
    • Identify an unknown sequence of DNA by performing a BLAST search
    • Navigate sources of scientific information to assess the accuracy of their experimental techniques
  • Students using the Understanding Eukaryotic Genes curriculum to construct a gene model. Students are working as a pair to complete each Module using classroom computers.

    An undergraduate bioinformatics curriculum that teaches eukaryotic gene structure

    Learning Objectives
    Module 1
    • Demonstrate basic skills in using the UCSC Genome Browser to navigate to a genomic region and to control the display settings for different evidence tracks.
    • Explain the relationships among DNA, pre-mRNA, mRNA, and protein.
    Module 2
    • Describe how a primary transcript (pre-mRNA) can be synthesized using a DNA molecule as the template.
    • Explain the importance of the 5' and 3' regions of the gene for initiation and termination of transcription by RNA polymerase II.
    • Identify the beginning and the end of a transcript using the capabilities of the genome browser.
    Module 3
    • Explain how the primary transcript generated by RNA polymerase II is processed to become a mature mRNA, using the sequence signals identified in Module 2.
    • Use the genome browser to analyze the relationships among:
    • pre-mRNA
    • 5' capping
    • 3' polyadenylation
    • splicing
    • mRNA
    Module 4
    • Identify splice donor and acceptor sites that are best supported by RNA-Seq data and TopHat splice junction predictions.
    • Utilize the canonical splice donor and splice acceptor sequences to identify intron-exon boundaries.
    Module 5
    • Determine the codons for specific amino acids and identify reading frames by examining the Base Position track in the genome browser.
    • Assemble exons to maintain the open reading frame (ORF) for a given gene.
    • Define the phases of the splice donor and acceptor sites and describe how they impact the maintenance of the ORF.
    • Identify the start and stop codons of an assembled ORF.
    Module 6
    • Demonstrate how alternative splicing of a gene can lead to different mRNAs.
    • Show how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.
  • 3D Print Models: A collection of 3D models printed from online repository files.
  • Structure of protein ADA2

    Understanding Protein Domains: A Modular Approach

    Learning Objectives
    • Students will be able to compare protein sequences and identify conserved regions and putative domains.
    • Students will be able to obtain, examine, and compare structural models of protein domains.
    • Students will be able to interpret data on protein interactions (in vitro pull-down and in vitro and in vivo functional assays)
    • Students will be able to propose experiments to test protein interactions.
  • Human karyotype

    Homologous chromosomes? Exploring human sex chromosomes, sex determination and sex reversal using bioinformatics...

    Learning Objectives
    Students successfully completing this lesson will:
    • Practice navigating an online bioinformatics resource and identify evidence relevant to solving investigation questions
    • Contrast the array of genes expected on homologous autosomal chromosomes pairs with the array of genes expected on sex chromosome pairs
    • Use bioinformatics evidence to defend the definition of homologous chromosomes
    • Define chromosomal sex and defend the definition using experimental data
    • Investigate the genetic basis of human chromosomal sex determination
    • Identify at least two genetic mutations can lead to sex reversal
  • Image from http://www.epa.gov/airdata/ad_maps.html

    Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues

    Learning Objectives
    Students will be able to:
    • Describe various parameters of air quality that can negatively impact human health, list priority air pollutants, and interpret the EPA Air Quality Index as it relates to human health.
    • Identify an air quality problem that varies on spatial and/or temporal scales that can be addressed using publicly available U.S. EPA air data.
    • Collect appropriate U.S. EPA Airdata information needed to answer that/those questions, using the U.S. EPA Airdata website data mining tools.
    • Analyze the data as needed to address or answer their question(s).
    • Interpret data and draw conclusions regarding air quality levels and/or impacts on human and public health.
    • Communicate results in the form of a scientific paper.