Skip to main content

You are here



  • A A student assists Colorado Parks & Wildlife employees spawning greenback cutthroat trout at the Leadville National Fish Hatchery; B greenback cutthroat trout adults in a hatchery raceway; C tissue samples collected by students to be used for genetic analysis (images taken by S. Love Stowell)

    Cutthroat trout in Colorado: A case study connecting evolution and conservation

    Learning Objectives
    Students will be able to:
    • interpret figures such as maps, phylogenies, STRUCTURE plots, and networks for species delimitation
    • identify sources of uncertainty and disagreement in real data sets
    • propose research to address or remedy uncertainty
    • construct an evidence-based argument for the management of a rare taxon
  • The Flygometer 2.0: The photo is of the Fly Treadmill used in this experiment.

    Fly Exercise: A Simple Experiment to Test the Physiological Effects of Exercise on a Model Organism

    Learning Objectives
    Students will:
    • demonstrate understanding of the concept and details of experimental design.
    • perform an organic lipid extraction to determine total lipid content.
    • quantify enzyme activity, as well as triglyceride, glucose, and glycogen concentrations.
    • organize their collected data into spreadsheets for statistical analyses.
    • interpret the results to gain insight on the varying effects exercise has on an organism's physiology.
    • graphically present their results so that trends can be easily identified.
  • SNP model by David Eccles (gringer) [GFDL ( or CC BY 4.0 (], via Wikimedia Commons

    Exploration of the Human Genome by Investigation of Personalized SNPs

    Learning Objectives
    Students successfully completing this lesson will be able to:
    • Effectively use the bioinformatics databases (SNPedia, the UCSC Genome Browser, and NCBI) to explore SNPs of interest within the human genome.
    • Identify three health-related SNPs of personal interest and use the UCSC Genome Browser to define their precise chromosomal locations and determine whether they lie within a gene or are intergenic.
    • Establish a list of all genome-wide association studies correlated with a particular health-related SNP.
    • Predict which model organism would be most appropriate for conducting further research on a human disease.