Skip to main content

You are here


Search found 6 items


  • Multiple sequence alignment of homologous cytochrome C protein sequences using Jalview viewer.

    Sequence Similarity: An inquiry based and "under the hood" approach for incorporating molecular sequence...

    Learning Objectives
    At the end of this lesson, students will be able to:
    • Define similarity in a non-biological and biological sense when provided with two strings of letters.
    • Quantify the similarity between two gene/protein sequences.
    • Explain how a substitution matrix is used to quantify similarity.
    • Calculate amino acid similarity scores using a scoring matrix.
    • Demonstrate how to access genomic data (e.g., from NCBI nucleotide and protein databases).
    • Demonstrate how to use bioinformatics tools to analyze genomic data (e.g., BLASTP), explain a simplified BLAST search algorithm including how similarity is used to perform a BLAST search, and how to evaluate the results of a BLAST search.
    • Create a nearest-neighbor distance matrix.
    • Create a multiple sequence alignment using a nearest-neighbor distance matrix and a phylogram based on similarity of amino acid sequences.
    • Use appropriate bioinformatics sequence alignment tools to investigate a biological question.
  • A three-dimensional model of methionine is superimposed on a phase contrast micrograph of Saccharomyces cerevisiae from a log phase culture.

    Follow the Sulfur: Using Yeast Mutants to Study a Metabolic Pathway

    Learning Objectives
    At the end of this lesson, students will be able to:
    • use spot plating techniques to compare the growth of yeast strains on solid culture media.
    • predict the ability of specific met deletion strains to grow on media containing various sulfur sources.
    • predict how mutations in specific genes will affect the concentrations of metabolites in the pathways involved in methionine biosynthesis.
  • Students using the Understanding Eukaryotic Genes curriculum to construct a gene model. Students are working as a pair to complete each Module using classroom computers.

    An undergraduate bioinformatics curriculum that teaches eukaryotic gene structure

    Learning Objectives
    Module 1
    • Demonstrate basic skills in using the UCSC Genome Browser to navigate to a genomic region and to control the display settings for different evidence tracks.
    • Explain the relationships among DNA, pre-mRNA, mRNA, and protein.
    Module 2
    • Describe how a primary transcript (pre-mRNA) can be synthesized using a DNA molecule as the template.
    • Explain the importance of the 5' and 3' regions of the gene for initiation and termination of transcription by RNA polymerase II.
    • Identify the beginning and the end of a transcript using the capabilities of the genome browser.
    Module 3
    • Explain how the primary transcript generated by RNA polymerase II is processed to become a mature mRNA, using the sequence signals identified in Module 2.
    • Use the genome browser to analyze the relationships among:
    • pre-mRNA
    • 5' capping
    • 3' polyadenylation
    • splicing
    • mRNA
    Module 4
    • Identify splice donor and acceptor sites that are best supported by RNA-Seq data and TopHat splice junction predictions.
    • Utilize the canonical splice donor and splice acceptor sequences to identify intron-exon boundaries.
    Module 5
    • Determine the codons for specific amino acids and identify reading frames by examining the Base Position track in the genome browser.
    • Assemble exons to maintain the open reading frame (ORF) for a given gene.
    • Define the phases of the splice donor and acceptor sites and describe how they impact the maintenance of the ORF.
    • Identify the start and stop codons of an assembled ORF.
    Module 6
    • Demonstrate how alternative splicing of a gene can lead to different mRNAs.
    • Show how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.
  • Image from

    Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues

    Learning Objectives
    Students will be able to:
    • Describe various parameters of air quality that can negatively impact human health, list priority air pollutants, and interpret the EPA Air Quality Index as it relates to human health.
    • Identify an air quality problem that varies on spatial and/or temporal scales that can be addressed using publicly available U.S. EPA air data.
    • Collect appropriate U.S. EPA Airdata information needed to answer that/those questions, using the U.S. EPA Airdata website data mining tools.
    • Analyze the data as needed to address or answer their question(s).
    • Interpret data and draw conclusions regarding air quality levels and/or impacts on human and public health.
    • Communicate results in the form of a scientific paper.
  • Bacteria growing on petri dish

    You and Your Oral Microflora: Introducing non-biology majors to their “forgotten organ”

    Learning Objectives
    Students will be able to:
    • Explain both beneficial and detrimental roles of microbes in human health.
    • Compare and contrast DNA replication as it occurs inside a cell versus in a test tube
    • Identify an unknown sequence of DNA by performing a BLAST search
    • Navigate sources of scientific information to assess the accuracy of their experimental techniques
  • ACTN3 from

    The ACTN3 Polymorphism: Applications in Genetics and Physiology Teaching Laboratories

    Learning Objectives
    1. Test hypotheses related to the role of ACTN3 in skeletal muscle function.
    2. Explain how polymorphic variants of the ACTN3 gene affect protein structure and function.
    3. List and explain the differences between fast twitch and slow twitch muscle fibers.
    4. List and explain possible roles of the ACTN3 protein in skeletal muscle function.
    5. Find and analyze relevant scientific publications about the relationship between ACTN3 genotype and muscle function.
    6. Formulate hypotheses related to the relationship between ACTN3 genotype and skeletal muscle function.
    7. Design experiments to test hypotheses about the role of ACTN3 in skeletal muscle function.
    8. Statistically analyze experimental results using relevant software.
    9. Present experimental results in writing.