Skip to main content

You are here

Filters

Search found 12 items

Search

  • Students present their posters to classmates and instructors during a poster fair.

    Discovery Poster Project

    Learning Objectives
    Students will be able to:
    • identify and learn about a scientific research discovery of interest to them using popular press articles and the primary literature
    • find a group on campus doing research that aligns with their interests and communicate with the faculty leader of that group
    • create and present a poster that synthesizes their knowledge of the research beyond the discovery
  • The Roc is a mythical giant bird of prey, first conceived during the Islamic Golden Age (~8th to 13th centuries CE), popularized in folk tales gathered in One Thousand One Nights. Rocs figured prominently in tales of Sinbad the Sailor. In this 1898 illustration by René Bull, the Roc is harassing two of Sinbad’s small fleet of ships. Illustration by René Bull is licensed under CC BY 2.0. (Source: https://en.wikipedia.org/wiki/Roc_(mythology)#mediaviewer/File:Rocweb.jpg)

    A first lesson in mathematical modeling for biologists: Rocs

    Learning Objectives
    • Systematically develop a functioning, discrete, single-species model of an exponentially-growing or -declining population.
    • Use the model to recommend appropriate action for population management.
    • Communicate model output and recommendations to non-expert audiences.
    • Generate a collaborative work product that most individuals could not generate on their own, given time and resource constraints.
  • DNA barcoding research in first-year biology curriculum

    CURE-all: Large Scale Implementation of Authentic DNA Barcoding Research into First-Year Biology Curriculum

    Learning Objectives
    Students will be able to: Week 1-4: Fundamentals of Science and Biology
    • List the major processes involved in scientific discovery
    • List the different types of scientific studies and which types can establish causation
    • Design experiments with appropriate controls
    • Create and evaluate phylogenetic trees
    • Define taxonomy and phylogeny and explain their relationship to each other
    • Explain DNA sequence divergence and how it applies to evolutionary relationships and DNA barcoding
    Week 5-6: Ecology
    • Define and measure biodiversity and explain its importance
    • Catalog organisms using the morphospecies concept
    • Geographically map organisms using smartphones and an online mapping program
    • Calculate metrics of species diversity using spreadsheet software
    • Use spreadsheet software to quantify and graph biodiversity at forest edges vs. interiors
    • Write a formal lab report
    Week 7-11: Cellular and Molecular Biology
    • Extract, amplify, visualize and sequence DNA using standard molecular techniques (PCR, gel electrophoresis, Sanger sequencing)
    • Explain how DNA extraction, PCR, gel electrophoresis, and Sanger sequencing work at the molecular level
    Week 12-13: Bioinformatics
    • Trim and assemble raw DNA sequence data
    • Taxonomically identify DNA sequences isolated from unknown organisms using BLAST
    • Visualize sequence data relationships using sequence alignments and gene-based phylogenetic trees
    • Map and report data in a publicly available online database
    • Share data in a formal scientific poster
  • Example image of dividing cells obtained from the Allen Institute for Cell Science 3D Cell Viewer.

    A virtual laboratory on cell division using a publicly-available image database

    Learning Objectives
    • Students will name and describe the salient features and cellular tasks for each stage of cell division.
    • Students will predict the relative durations of the stages of cell division using prior knowledge and facts from assigned readings.
    • Students will describe the relationship between duration of each stage of cell division and the frequency of cells present in each stage of cell division counted in a random sample of images of pluripotent stem cells.
    • Students will identify the stages of cell division present in research-quality images of human pluripotent stem cells in various stages of cell division.
    • Students will quantify, analyze and summarize data on the prevalence of cells at different stages of cell division in randomly sampled cell populations.
    • Students will use data to reflect on and revise predictions.
  • A photo of grizzly bears fishing in the McNeil Falls in Alaska, taken using BearCam by Lawrence Griffing.

    Authentic Ecological Inquiries Using BearCam Archives

    Learning Objectives
    Students will be able to:
    • conduct an authentic ecological inquiry including
      • generate a testable hypothesis based on observations,
      • design investigation with appropriate sampling selection and variables,
      • collect and analyze data following the design, and
      • interpret results and draw conclusions based on the evidence.
    • write a research report with appropriate structure and style.
    • evaluate the quality of inquiry reports using a rubric.
    • conduct peer review to evaluate and provide feedback to others' work.
    • revise the inquiry report based on peer feedback and self-assessment.
  • “Phenology of a Dawn Redwood” – Images collected by students for this lesson pieced together illustrating a Metasequoia glyptostroboides changing color and dropping its leaves in the fall of 2017 on Michigan State University campus.

    Quantifying and Visualizing Campus Tree Phenology

    Learning Objectives
    The Learning Objectives of this lesson span across the entire semester.
    • Observe and collect information on phenological changes in local trees.
    • Become familiar with a database and how to work with large datasets.
    • Analyze and visualize data from the database to test their hypotheses and questions.
    • Develop a research proposal including empirically-driven questions and hypotheses.
    • Synthesize the results of their analysis in the context of plant biodiversity and local environmental conditions.
  • Simplified Representation of the Global Carbon Cycle, https://earthobservatory.nasa.gov/Features/CarbonCycle/images/carbon_cycle.jpg

    Promoting Climate Change Literacy for Non-majors: Implementation of an atmospheric carbon dioxide modeling activity as...

    Learning Objectives
    • Students will be able to manipulate and produce data and graphs.
    • Students will be able to design a simple mathematical model of atmospheric CO2 that can be used to make predictions.
    • Students will be able to conduct simulations, analyze, interpret, and draw conclusions about atmospheric CO2 levels from their own computer generated simulated data.
     
  • A A student assists Colorado Parks & Wildlife employees spawning greenback cutthroat trout at the Leadville National Fish Hatchery; B greenback cutthroat trout adults in a hatchery raceway; C tissue samples collected by students to be used for genetic analysis (images taken by S. Love Stowell)

    Cutthroat trout in Colorado: A case study connecting evolution and conservation

    Learning Objectives
    Students will be able to:
    • interpret figures such as maps, phylogenies, STRUCTURE plots, and networks for species delimitation
    • identify sources of uncertainty and disagreement in real data sets
    • propose research to address or remedy uncertainty
    • construct an evidence-based argument for the management of a rare taxon
  • A crossbill feeds on a pinecone

    Coevolution or not? Crossbills, squirrels and pinecones

    Learning Objectives
    1. Define coevolution.
    2. Identify types of evidence that would help determine whether two species are currently in a coevolutionary relationship.
    3. Interpret graphs.
    4. Evaluate evidence about whether two species are coevolving and use evidence to make a scientific argument.
    5. Describe what evidence of a coevolutionary relationship might look like.
    6. Distinguish between coadaptation and coevolution.
  • Two cells stained

    Bad Cell Reception? Using a cell part activity to help students appreciate cell biology, with an improved data plan and...

    Learning Objectives
    • Identify cell parts and explain their function
    • Explain how defects in a cell part can result in human disease
    • Generate thought-provoking questions that expand upon existing knowledge
    • Create a hypothesis and plan an experiment to answer a cell part question
    • Find and reference relevant cell biology journal articles
  • Confocal microscope image of a mouse egg that is arrested at metaphase of meiosis II. Green, tubulin staining of meiotic spindle; red, actin staining of egg membrane; blue, DNA. This image was obtained on a Zeiss 510 Meta confocal microscope in the Department of Genetics at Rutgers University

    Sex-specific differences in Meiosis: Real-world applications

    Learning Objectives
    After completion of the lesson students will be able to:
    1. Describe the differences between female and male meiosis.
    2. Interpret graphical data to make decisions relevant to medical practices.
    3. Develop a hypothesis that explains the difference in incidence of aneuploidy in gametes between males and females.
  • Students use plastic Easter eggs and chocolate pieces to simulate the distribution of HIV in T lymphocytes.

    Infectious Chocolate Joy with a Side of Poissonian Statistics: An activity connecting life science students with subtle...

    Learning Objectives
    • Students will define a Poisson distribution.
    • Students will generate a data set on the probability of a T cell being infected with a virus(es).
    • Students will predict the likelihood of one observing the mean value of viruses occurring.
    • Students will evaluate the outcomes of a random process.
    • Students will hypothesize whether a process is Poissonian and design a test for that hypothesis.
    • Students will collect data and create a histogram from their data.