Skip to main content

You are here


Search found 31 items


  • Students participating in the peer review process. Practicing the writing of scientific manuscripts prepares students to understand and engage in the primary literature they encounter.
  • ACTN3 from

    The ACTN3 Polymorphism: Applications in Genetics and Physiology Teaching Laboratories

    Learning Objectives
    1. Test hypotheses related to the role of ACTN3 in skeletal muscle function.
    2. Explain how polymorphic variants of the ACTN3 gene affect protein structure and function.
    3. List and explain the differences between fast twitch and slow twitch muscle fibers.
    4. List and explain possible roles of the ACTN3 protein in skeletal muscle function.
    5. Find and analyze relevant scientific publications about the relationship between ACTN3 genotype and muscle function.
    6. Formulate hypotheses related to the relationship between ACTN3 genotype and skeletal muscle function.
    7. Design experiments to test hypotheses about the role of ACTN3 in skeletal muscle function.
    8. Statistically analyze experimental results using relevant software.
    9. Present experimental results in writing.
  • Medical students at a fair. Credit: Danieladelrio

    Casting a Wide Net via Case Studies: Educating across the undergraduate to medical school continuum in the biological...

    Learning Objectives
    At the end of this lesson, the student should be able to:
    • Consider the potential advantages and disadvantages of widespread use of whole genome sequencing and direct-to-consumer genetic testing.
    • Explore the critical need to maintain privacy of individual genetic test results to protect patient interests.
    • Dissect the nuances of reporting whole genome sequencing results.
    • Recognize the economic ramifications of precision medicine strategies.
    • Formulate a deeper understanding of the ethical dimensions of emerging genetic testing technologies.
  • Image of a writing center

    Visits to the writing center and office hours provide students structured reflection and low-stakes feedback on...

    Learning Objectives
    • Students will be able to write a lab report that contains a descriptive title, complete and concise abstract, substantive and relevant introduction that includes a testable hypothesis, descriptive methods, description and comparison of results of various testable groups, biological explanation of the results that reflect the testable hypothesis, a conclusion that contains societal implications or scientific impact, and references cited in the document.
    • Students will be able to self-identify weaknesses and strengths of their writing.
    • Students will understand how to utilize office hours and the writing center to receive feedback on their lab reports.
  • Confocal microscope image of a mouse egg that is arrested at metaphase of meiosis II. Green, tubulin staining of meiotic spindle; red, actin staining of egg membrane; blue, DNA. This image was obtained on a Zeiss 510 Meta confocal microscope in the Department of Genetics at Rutgers University

    Sex-specific differences in Meiosis: Real-world applications

    Learning Objectives
    After completion of the lesson students will be able to:
    1. Describe the differences between female and male meiosis.
    2. Interpret graphical data to make decisions relevant to medical practices.
    3. Develop a hypothesis that explains the difference in incidence of aneuploidy in gametes between males and females.
  • Graphic of structured decision making process

    Using Structured Decision Making to Explore Complex Environmental Issues

    Learning Objectives
    Students will be able to:
    1. Describe the process, challenges, and benefits of structured decision making for natural resource management decisions.
    2. Explain and reflect on the role of science and scientists in structured decision making and how those roles interact and compare to the roles of other stakeholders.
    3. Assess scientific evidence for a given management or policy action to resolve an environmental issue.
  • Madhumathi S V (2013) This image is license under a Creative Commons Atrribution-Share Alike 4.0 International.

    Priority Setting in Public Health: A lesson in ethics and hard choices

    Learning Objectives
    At the end of this unit, students will be able to:
    • Define the central distinction between public health and medicine
    • Apply objectives of public health and individual medical care in a particular situation to identify potential areas of conflict in priority setting
    • Apply moral theories of utilitarianism and deontology to a particular situation to identify the course of action proponents of each theory would see as morally justified
    • Identify the range of morally justifiable actions that might be available to a health professional in a particular setting
    • Choose from among a range of possible actions in a particular health situation and articulate the ethical principles that would justify that choice.
  • Students preforming the leaky neuron activity.

    The Leaky Neuron: Understanding synaptic integration using an analogy involving leaky cups

    Learning Objectives
    Students will able to:
    • compare and contrast spatial and temporal summation in terms of the number of presynaptic events and the timing of these events
    • predict the relative contribution to reaching threshold and firing an action potential as a function of distance from the axon hillock
    • predict how the frequency of incoming presynaptic action potentials effects the success of temporal summation of resultant postsynaptic potentials
  • A crossbill feeds on a pinecone

    Coevolution or not? Crossbills, squirrels and pinecones

    Learning Objectives
    1. Define coevolution.
    2. Identify types of evidence that would help determine whether two species are currently in a coevolutionary relationship.
    3. Interpret graphs.
    4. Evaluate evidence about whether two species are coevolving and use evidence to make a scientific argument.
    5. Describe what evidence of a coevolutionary relationship might look like.
    6. Distinguish between coadaptation and coevolution.
  • 3D Print Model of the Mars Curiosity Rover, printed from NASA 3D Resources (

    Exploring the March to Mars Using 3D Print Models

    Learning Objectives
    • Students will be able to describe the major aspects of the Mars Curiosity Rover missions.
    • Students will be able to synthesize information learned from a classroom jigsaw activity on the Mars Curiosity Rover missions.
    • Students will be able to work in teams to plan a future manned mission to Mars.
    • Students will be able to summarize their reports to the class.
  • pClone Red Makes Research Look Easy

    Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Introductory Biology (identifying...

    Learning Objectives
    • Describe how cells can produce proteins at the right time and correct amount.
    • Diagram how a repressor works to reduce transcription.
    • Diagram how an activator works to increase transcription.
    • Identify a new promoter from literature and design a method to clone it and test its function.
    • Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments.
    • Design an experiment to verify a new promoter has been cloned into a destination vector.
    • Design an experiment to measure the strength of a promoter.
    • Analyze data showing reporter protein produced and use the data to assess promoter strength.
    • Define type IIs restriction enzymes.
    • Distinguish between type II and type IIs restriction enzymes.
    • Explain how Golden Gate Assembly (GGA) works.
    • Measure the relative strength of a promoter compared to a standard promoter.
  • Adult female Daphnia dentifera. Daphnia spp. make a great study system due to their transparent body and their ease of upkeep in a lab.

    Dynamic Daphnia: An inquiry-based research experience in ecology that teaches the scientific process to first-year...

    Learning Objectives
    Students will be able to:
    • Construct written predictions about 1 factor experiments.
    • Interpret simple (2 variables) figures.
    • Construct simple (2 variables) figures from data.
    • Design simple 1 factor experiments with appropriate controls.
    • Demonstrate proper use of standard laboratory items, including a two-stop pipette, stereomicroscope, and laboratory notebook.
    • Calculate means and standard deviations.
    • Given some scaffolding (instructions), select the correct statistical test for a data set, be able to run a t-test, ANOVA, chi-squared test, and linear regression in Microsoft Excel, and be able to correctly interpret their results.
    • Construct and present a scientific poster.
  • 3D Print Models: A collection of 3D models printed from online repository files.
  • A tuco-tuco in South America (photo credit: Jeremy Hsu)

    Furry with a chance of evolution: Exploring genetic drift with tuco-tucos

    Learning Objectives
    • Students will be able to explain how genetic drift leads to allelic changes over generations.
    • Students will be able to demonstrate that sampling error can affect every generation, which can result in random changes in allelic frequency.
    • Students will be able to explore and evaluate the effect of population size on the strength of genetic drift.
    • Students will be able to analyze quantitative data associated with genetic drift.
  • The Roc is a mythical giant bird of prey, first conceived during the Islamic Golden Age (~8th to 13th centuries CE), popularized in folk tales gathered in One Thousand One Nights. Rocs figured prominently in tales of Sinbad the Sailor. In this 1898 illustration by René Bull, the Roc is harassing two of Sinbad’s small fleet of ships. Illustration by René Bull is licensed under CC BY 2.0. (Source:

    A first lesson in mathematical modeling for biologists: Rocs

    Learning Objectives
    • Systematically develop a functioning, discrete, single-species model of an exponentially-growing or -declining population.
    • Use the model to recommend appropriate action for population management.
    • Communicate model output and recommendations to non-expert audiences.
    • Generate a collaborative work product that most individuals could not generate on their own, given time and resource constraints.
  • Possible implementations of a short research module

    A Short Laboratory Module to Help Infuse Metacognition during an Introductory Course-based Research Experience

    Learning Objectives
    • Students will be able to evaluate the strengths and weaknesses of data.
    • Students will be able to employ prior knowledge in formulating a biological research question or hypothesis.
    • Students will be able to distinguish a research question from a testable hypothesis.
    • Students will recognize that the following are essential elements in experimental design: identifying gaps in prior knowledge, picking an appropriate approach (ex. experimental tools and controls) for testing a hypothesis, and reproducibility and repeatability.
    • Students will be able to identify appropriate experimental tools, approaches and controls to use in testing a hypothesis.
    • Students will be able to accurately explain why an experimental approach they have selected is a good choice for testing a particular hypothesis.
    • Students will be able to discuss whether experimental outcomes support or fail to support a particular hypothesis, and in the case of the latter, discuss possible reasons why.
  • Results formula questions. Shows the five questions that comprise the formula for writing a scientific Results section.
  • Using phylogenetics to make inferences about historical biogeographic patterns of evolution.

    Building Trees: Introducing evolutionary concepts by exploring Crassulaceae phylogeny and biogeography

    Learning Objectives
    Students will be able to:
    • Estimate phylogenetic trees using diverse data types and phylogenetic models.
    • Correctly make inferences about evolutionary history and relatedness from the tree diagrams obtained.
    • Use selected computer programs for phylogenetic analysis.
    • Use bootstrapping to assess the statistical support for a phylogeny.
    • Use phylogenetic data to construct, compare, and evaluate the role of geologic processes in shaping the historical and current geographic distributions of a group of organisms.
  • Modeling the Research Process: Authentic human physiology research in a large non-majors course

    Learning Objectives
    Students will be able to:
    • Read current scientific literature
    • Formulate testable hypotheses
    • Design an experimental procedure to test their hypothesis
    • Make scientific observations
    • Analyze and interpret data
    • Communicate results visually and orally
  • This collage contains original images taken by the course instructor. The images show a microscopic view of stomata on the underside of a Brassica rapa leaf (A), B. rapa plants in their growth trays (B), a flowering B. rapa plant (C), and different concentrations of foliar protein (D). Photos edited via Microsoft Windows Photo Editor and Phototastic Collage Maker.

    A flexible, multi-week approach to plant biology - How will plants respond to higher levels of CO2?

    Learning Objectives
    Students will be able to:
    • Apply findings from each week's lesson to make predictions and informed hypotheses about the next week's lesson.
    • Keep a detailed laboratory notebook.
    • Write and peer-edit the sections of a scientific paper, and collaboratively write an entire lab report in the form of a scientific research paper.
    • Search for, find, and read scientific research papers.
    • Work together as a team to conduct experiments.
    • Connect findings and ideas from each week's lesson to get a broader understanding of how plants will respond to higher levels of CO2 (e.g., stomatal density, photosynthetic/respiratory rates, foliar protein concentrations, growth, and resource allocation).
    Note: Additional, more specific objectives are included with each of the four lessons (Supporting Files S1-S4)
  • Memory Helper is an illustration of a made up dietary supplement. Because the supplement is named Memory Helper, and because a picture of a brain is placed on the label, consumers might believe that the supplement is a memory aid. We add the footnote “tested?” to suggest that consumers should take a closer look.

    Bad Science: Exploring the unethical research behind a putative memory supplement

    Learning Objectives
    Students will be able to:
    • create criteria for evaluating information that is touted as scientific.
    • apply those criteria to evaluate the claim that Prevagen® enhances memory.
    • identify the misleading tactics used on the Prevagen® website and in their self-published reporting.
    • decide whether to recommend taking Prevagen® and explain their decisions.
  • Hydrozoan polyps on a hermit-crab shell (photo by Tiffany Galush)

    A new approach to course-based research using a hermit crab-hydrozoan symbiosis

    Learning Objectives
    Students will be able to:
    • define different types of symbiotic interactions, with specific examples.
    • summarize and critically evaluate contemporary primary literature relevant to ecological symbioses, in particular that between hermit crabs and Hydractinia spp.
    • articulate a question, based on observations of a natural phenomenon (in this example, the hermit crab-Hydractinia interaction).
    • articulate a testable hypothesis, based on their own observations and read of the literature.
    • design appropriate experimental or observational studies to address their hypotheses.
    • collect and interpret data in light of their hypotheses.
    • problem-solve and troubleshoot issues that arise during their experiment.
    • communicate scientific results, both orally and in written form.
  • Image from

    Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues

    Learning Objectives
    Students will be able to:
    • Describe various parameters of air quality that can negatively impact human health, list priority air pollutants, and interpret the EPA Air Quality Index as it relates to human health.
    • Identify an air quality problem that varies on spatial and/or temporal scales that can be addressed using publicly available U.S. EPA air data.
    • Collect appropriate U.S. EPA Airdata information needed to answer that/those questions, using the U.S. EPA Airdata website data mining tools.
    • Analyze the data as needed to address or answer their question(s).
    • Interpret data and draw conclusions regarding air quality levels and/or impacts on human and public health.
    • Communicate results in the form of a scientific paper.
  • Monarch larvae

    Does it pose a threat? Investigating the impact of Bt corn on monarch butterflies

    Learning Objectives
    Students will be able to:
    • Apply genetics concepts to a relevant case study of Bt corn and monarch butterflies
    • Read figures and text from primary literature
    • Identify claims presented in scientific studies
    • Evaluate data presented in scientific studies
    • Critically reason using data
    • Evaluate the consequences of GM technology on non-target organisms
    • Communicate scientific data orally
  • Students at Century College use gel electrophoresis to analyze PCR samples in order to detect a group of ampicillin-resistance genes.

    Antibiotic Resistance Genes Detection in Environmental Samples

    Learning Objectives
    After completing this laboratory series, students will be able to:
    • apply the scientific method in formulating a hypothesis, designing a controlled experiment using appropriate molecular biology techniques, and analyzing experimental results;
    • conduct a molecular biology experiment and explain the principles behind methodologies, such as accurate use of micropipettes, PCR (polymerase chain reaction), and gel electrophoresis;
    • determine the presence of antibiotic-resistance genes in environmental samples by analyzing PCR products using gel electrophoresis;
    • explain mechanisms of microbial antibiotic resistance;
    • contribute data to the Antibiotic Resistance Genes Network;
    • define and apply key concepts of antibiotic resistance and gene identification via PCR fragment size.
  • A three-dimensional model of methionine is superimposed on a phase contrast micrograph of Saccharomyces cerevisiae from a log phase culture.

    Follow the Sulfur: Using Yeast Mutants to Study a Metabolic Pathway

    Learning Objectives
    At the end of this lesson, students will be able to:
    • use spot plating techniques to compare the growth of yeast strains on solid culture media.
    • predict the ability of specific met deletion strains to grow on media containing various sulfur sources.
    • predict how mutations in specific genes will affect the concentrations of metabolites in the pathways involved in methionine biosynthesis.
  • Students using the Understanding Eukaryotic Genes curriculum to construct a gene model. Students are working as a pair to complete each Module using classroom computers.

    An undergraduate bioinformatics curriculum that teaches eukaryotic gene structure

    Learning Objectives
    Module 1
    • Demonstrate basic skills in using the UCSC Genome Browser to navigate to a genomic region and to control the display settings for different evidence tracks.
    • Explain the relationships among DNA, pre-mRNA, mRNA, and protein.
    Module 2
    • Describe how a primary transcript (pre-mRNA) can be synthesized using a DNA molecule as the template.
    • Explain the importance of the 5' and 3' regions of the gene for initiation and termination of transcription by RNA polymerase II.
    • Identify the beginning and the end of a transcript using the capabilities of the genome browser.
    Module 3
    • Explain how the primary transcript generated by RNA polymerase II is processed to become a mature mRNA, using the sequence signals identified in Module 2.
    • Use the genome browser to analyze the relationships among:
    • pre-mRNA
    • 5' capping
    • 3' polyadenylation
    • splicing
    • mRNA
    Module 4
    • Identify splice donor and acceptor sites that are best supported by RNA-Seq data and TopHat splice junction predictions.
    • Utilize the canonical splice donor and splice acceptor sequences to identify intron-exon boundaries.
    Module 5
    • Determine the codons for specific amino acids and identify reading frames by examining the Base Position track in the genome browser.
    • Assemble exons to maintain the open reading frame (ORF) for a given gene.
    • Define the phases of the splice donor and acceptor sites and describe how they impact the maintenance of the ORF.
    • Identify the start and stop codons of an assembled ORF.
    Module 6
    • Demonstrate how alternative splicing of a gene can lead to different mRNAs.
    • Show how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.
  • Image from a clicker-based case study on muscular dystrophy and the effect of mutations on the processes in the central dogma.

    A clicker-based case study that untangles student thinking about the processes in the central dogma

    Learning Objectives
    Students will be able to:
    • explain the differences between silent (no change in the resulting amino acid sequence), missense (a change in the amino acid sequence), and nonsense (a change resulting in a premature stop codon) mutations.
    • differentiate between how information is encoded during DNA replication, transcription, and translation.
    • evaluate how different types of mutations (silent, missense, and nonsense) and the location of those mutations (intron, exon, and promoter) differentially affect the processes in the central dogma.
    • predict the molecular (DNA size, mRNA length, mRNA abundance, and protein length) and/or phenotypic consequences of mutations.
  • Sample Student Growth Curve. This image shows a yeast growth curve generated by a student in our lab, superimposed on an image of Saccharomyces cerevisiae cells.

    Using Yeast to Make Scientists: A Six-Week Student-Driven Research Project for the Cell Biology Laboratory

    Learning Objectives
    • Learn about basic S. cerevisiae biology
    • Use sterile technique
    • Perform a yeast viability assay
    • Use a spectrophotometer to measure growth of S. cerevisiae
    • Perform a literature search
    • Calculate concentrations of chemicals appropriate for S. cerevisiae
    • Generate S. cerevisiae growth curves
    • Troubleshoot experimental difficulties
    • Perform statistical analysis
    • Present findings to an audience
  • Arabidopsis Seedling

    Linking Genotype to Phenotype: The Effect of a Mutation in Gibberellic Acid Production on Plant Germination

    Learning Objectives
    Students will be able to:
    • identify when germination occurs.
    • score germination in the presence and absence of GA to construct graphs of collated class data of wild-type and mutant specimens.
    • identify the genotype of an unknown sample based on the analysis of their graphical data.
    • organize data and perform quantitative data analysis.
    • explain the importance of GA for plant germination.
    • connect the inheritance of a mutation with the observed phenotype.