Skip to main content

You are here

Filters

Search found 43 items

Search

  • Students preforming the leaky neuron activity.

    The Leaky Neuron: Understanding synaptic integration using an analogy involving leaky cups

    Learning Objectives
    Students will able to:
    • compare and contrast spatial and temporal summation in terms of the number of presynaptic events and the timing of these events
    • predict the relative contribution to reaching threshold and firing an action potential as a function of distance from the axon hillock
    • predict how the frequency of incoming presynaptic action potentials effects the success of temporal summation of resultant postsynaptic potentials
  • Binding pocket diagram The image suggests that by providing appropriate non-covalent interactions at sites A, B and C, students can create a binding pocket selective for the neurotransmitter molecule serotonin.

    Serotonin in the Pocket: Non-covalent interactions and neurotransmitter binding

    Learning Objectives
    • Students will design a binding site for the neurotransmitter serotonin.
    • Students will be able to determine the effect of a change in molecular orientation on the affinity of the molecule for the binding site.
    • Students will be able to determine the effect of a change in molecular charge on the affinity of the molecule for the binding site.
    • Students will be able to better differentiate between hydrogen bond donors and acceptors.
    • Students can use this knowledge to design binding sites for other metabolites.
  • 3D Print Models: A collection of 3D models printed from online repository files.
  • Images of students participating in the SIDE activity

    Using a Sequential Interpretation of Data in Envelopes (SIDE) approach to identify a mystery TRP channel

    Learning Objectives
    • Students will be able to analyze data from multiple experimental methodologies to determine the identity of their "mystery" TRP channel.
    • Students will be able to interpret the results of individual experiments and from multiple experiments simultaneously to identify their "mystery" TRP channel.
    • Students will be able to evaluate the advantages and limitations of experimental methodologies presented in this lesson.
  • Neutrophils in a Danio rerio Embryo. Student-generated picture of a wounded zebrafish embryo that was stained to show the neutrophils (small black dots) that had migrated toward the wound site on the fin.

    Inexpensive Cell Migration Inquiry Lab using Zebrafish

    Learning Objectives
    Students will:
    • formulate a hypothesis and design an experiment with the proper controls.
    • describe the steps involved in the zebrafish wounding assay (treating zebrafish embryos with drugs or control substances, wounding the embryo, staining the embryo, and counting neutrophils near the wound).
    • summarize results into a figure and write a descriptive figure legend.
    • perform appropriate statistical analysis.
    • interpret results in a discussion that draws connections between the cytoskeleton and cell migration.
    • put data into context by appropriately using information from journal articles in the introduction and discussion of a lab report.
  • Students use plastic Easter eggs and chocolate pieces to simulate the distribution of HIV in T lymphocytes.

    Infectious Chocolate Joy with a Side of Poissonian Statistics: An activity connecting life science students with subtle...

    Learning Objectives
    • Students will define a Poisson distribution.
    • Students will generate a data set on the probability of a T cell being infected with a virus(es).
    • Students will predict the likelihood of one observing the mean value of viruses occurring.
    • Students will evaluate the outcomes of a random process.
    • Students will hypothesize whether a process is Poissonian and design a test for that hypothesis.
    • Students will collect data and create a histogram from their data.
  • This collage contains original images taken by the course instructor. The images show a microscopic view of stomata on the underside of a Brassica rapa leaf (A), B. rapa plants in their growth trays (B), a flowering B. rapa plant (C), and different concentrations of foliar protein (D). Photos edited via Microsoft Windows Photo Editor and Phototastic Collage Maker.

    A flexible, multi-week approach to plant biology - How will plants respond to higher levels of CO2?

    Learning Objectives
    Students will be able to:
    • Apply findings from each week's lesson to make predictions and informed hypotheses about the next week's lesson.
    • Keep a detailed laboratory notebook.
    • Write and peer-edit the sections of a scientific paper, and collaboratively write an entire lab report in the form of a scientific research paper.
    • Search for, find, and read scientific research papers.
    • Work together as a team to conduct experiments.
    • Connect findings and ideas from each week's lesson to get a broader understanding of how plants will respond to higher levels of CO2 (e.g., stomatal density, photosynthetic/respiratory rates, foliar protein concentrations, growth, and resource allocation).
    Note: Additional, more specific objectives are included with each of the four lessons (Supporting Files S1-S4)
  • Plant ecology students surveying vegetation at Red Hills, CA, spring 2012.  From left to right are G.L, F.D, A.M., and R.P.  Photo used with permission from all students.

    Out of Your Seat and on Your Feet! An adaptable course-based research project in plant ecology for advanced students

    Learning Objectives
    Students will:
    • Articulate testable hypotheses. (Lab 8, final presentation/paper, in-class exercises)
    • Analyze data to determine the level of support for articulated hypotheses. (Labs 4-7, final presentation/paper)
    • Identify multiple species of plants in the field quickly and accurately. (Labs 2-3, field trip)
    • Measure environmental variables and sample vegetation in the field. (Labs 2-3, field trip)
    • Analyze soil samples using a variety of low-tech lab techniques. (Open labs after field trip)
    • Use multiple statistical techniques to analyze data for patterns. (Labs 4-8, final presentation/paper)
    • Interpret statistical analyses to distinguish between strong and weak interactions in a biological system. (Labs 4-7, final presentation/paper)
    • Develop and present a conference-style presentation in a public forum. (Lab 8, final presentation/paper)
    • Write a publication-ready research paper communicating findings and displaying data. (Lab 8, final presentation/paper)
  • Image from http://www.epa.gov/airdata/ad_maps.html

    Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues

    Learning Objectives
    Students will be able to:
    • Describe various parameters of air quality that can negatively impact human health, list priority air pollutants, and interpret the EPA Air Quality Index as it relates to human health.
    • Identify an air quality problem that varies on spatial and/or temporal scales that can be addressed using publicly available U.S. EPA air data.
    • Collect appropriate U.S. EPA Airdata information needed to answer that/those questions, using the U.S. EPA Airdata website data mining tools.
    • Analyze the data as needed to address or answer their question(s).
    • Interpret data and draw conclusions regarding air quality levels and/or impacts on human and public health.
    • Communicate results in the form of a scientific paper.
  • A student playing the Cell Pictionary® portion of this lesson.

    Teaching Cell Structures through Games

    Learning Objectives
    • Students will identify cell structures when viewing an image or diagram of a cell.
    • Students will define the function of eukaryotic organelles and structures, including describing the processes and conditions related to transmembrane transport
    • Students will differentiate between prokaryotic and eukaryotic cells, plant and animal cells according to their structural organization.
  • How Silly Putty® is like bone

    What do Bone and Silly Putty® have in Common?: A Lesson on Bone Viscoelasticity

    Learning Objectives
    • Students will be able to explain how the anatomical structure of long bones relates to their function.
    • Students will be able to define viscoelasticity, hysteresis, anisotropy, stiffness, strength, ductility, and toughness.
    • Students will be able to identify the elastic and plastic regions of a stress-strain curve. They will be able to correlate each phase of the stress-strain curve with physical changes to bone.
    • Students will be able to predict how a bone would respond to changes in the magnitude of an applied force, and to variations in the speed or angle at which a force is applied.
    • Students will be able to determine the reason(s) why bone injuries occur more frequently during athletic events than during normal everyday use.
  • CRISPR/Cas9 in yeast experimental overview

    CRISPR/Cas9 in yeast: a multi-week laboratory exercise for undergraduate students

    Learning Objectives
    Week 1: CRISPR design
    • Locate the coding sequence, flanking sequence, protein product, and characteristics of a given gene from the Saccharomyces Genome Database (https://www.yeastgenome.org/).
    • Design and defend the design of guide RNA and single stranded template for DNA repair in CRISPR/Cas9 gene editing studies to generate Saccharomyces cerevisiae auxotrophic mutants.
    Week 3-4: Cloning
    • Describe the qualities of the vector, pML104, that allow replication and selection in bacteria and yeast as well as allow expression of necessary factors in CRISPR/Cas9 genome editing, including Cas9 and sgRNA.
    • Describe the rationale of and perform procedures necessary for cloning a small cassette (i.e., sgRNA gene) into a vector (i.e., pML104) including; restriction digest, annealing of DNA strands, removal of 5’ phosphates, ligation, and transformation.
    • Recognize and design appropriate controls for cloning procedures such as ligation and transformation.
    Week 5: Screening clones
    • Describe the method of polymerase chain reaction (PCR), including the rationale for essential components of a reaction mixture and thermal-cycling conditions.
    • Locate the binding sites of and design primers for PCR, then report the expected size of the amplification product.
    • Describe and perform isolation of plasmid DNA from E. coli.  
    Week 6: Selection of clones and transformation of yeast
    • Describe the rationale for and perform procedures to transform yeast, including the essential components of a transformation mixture and conditions necessary for transformation.
    • Describe the basic conditions required for cultivating yeast.
    • Describe the rationale for and perform agarose gel electrophoresis of a given size of DNA.
    • Analyze DNA separated by agarose gel electrophoresis, including size estimation.
    • Recognize and describe the qualities of a template for DNA repair that allows efficient DNA repair. 
    Week 7: Phenotyping
    • Design an experiment to determine auxotrophic phenotypes.
    • Predict the outcome of multi-step experiments.
    Multiweek
    • Recognize and describe conditions necessary for growth of E. coli and S. cerevisiae.
    • Qualitatively and quantitatively analyze scientific data from scientific experiments, including bacterial and yeast transformation, agarose gel electrophoresis, extraction of plasmid DNA from bacteria, PCR, and auxotroph phenotypic analysis.
    • Communicate science to peers through maintenance of a laboratory notebook, verbal communication with group members, and writing of a formal laboratory report written in a format acceptable for journal publication.
    • Troubleshoot scientific protocols by identifying procedures that are prone to error, comparing recommended protocols to actual procedure, and using positive and negative controls to narrow the location of a potential error.
    • Communicate specific potential or actual uses of CRISPR/Cas9 in science and/or medicine.
    Alignment with Society-Generated Learning Objectives - From Biochemistry and Molecular Biology, and Genetics Learning Frameworks
    • Use various bioinformatics approaches to analyze macromolecular primary sequence and structure.
    • Illustrate how DNA is replicated and genes are transmitted from one generation to the next in multiple types of organisms including bacteria, eukaryotes, viruses, and retroviruses.
    • Define what a genome consists of and how the information in various genes and other sequence classes within each genome are used to store and express genetic information.
    • Explain the meaning of ploidy (haploid, diploid, aneuploid etc.) and how it relates to the number of homologues of each chromosome. 
    • Predict the effects of mutations on the activity, structure, or stability of a protein and design appropriate experiments to assess the effects of mutations.
    • Predict the growth behavior of microbes based on their growth conditions, e.g., temperature, available nutrient, aeration level, etc.
    • Discuss the benefits of specific tools of modern biotechnology that are derived from naturally occurring microbes (e.g. cloning vectors, restriction enzymes, Taq polymerase, etc.)
    • Accurately prepare and use reagents and perform experiments.
    • When presented with an observation, develop a testable and falsifiable hypothesis.
    • When provided with a hypothesis, identify the appropriate experimental observations and controllable variables.
  • Possible implementations of a short research module

    A Short Laboratory Module to Help Infuse Metacognition during an Introductory Course-based Research Experience

    Learning Objectives
    • Students will be able to evaluate the strengths and weaknesses of data.
    • Students will be able to employ prior knowledge in formulating a biological research question or hypothesis.
    • Students will be able to distinguish a research question from a testable hypothesis.
    • Students will recognize that the following are essential elements in experimental design: identifying gaps in prior knowledge, picking an appropriate approach (ex. experimental tools and controls) for testing a hypothesis, and reproducibility and repeatability.
    • Students will be able to identify appropriate experimental tools, approaches and controls to use in testing a hypothesis.
    • Students will be able to accurately explain why an experimental approach they have selected is a good choice for testing a particular hypothesis.
    • Students will be able to discuss whether experimental outcomes support or fail to support a particular hypothesis, and in the case of the latter, discuss possible reasons why.
  • Example image of dividing cells obtained from the Allen Institute for Cell Science 3D Cell Viewer.

    A virtual laboratory on cell division using a publicly-available image database

    Learning Objectives
    • Students will name and describe the salient features and cellular tasks for each stage of cell division.
    • Students will predict the relative durations of the stages of cell division using prior knowledge and facts from assigned readings.
    • Students will describe the relationship between duration of each stage of cell division and the frequency of cells present in each stage of cell division counted in a random sample of images of pluripotent stem cells.
    • Students will identify the stages of cell division present in research-quality images of human pluripotent stem cells in various stages of cell division.
    • Students will quantify, analyze and summarize data on the prevalence of cells at different stages of cell division in randomly sampled cell populations.
    • Students will use data to reflect on and revise predictions.
  • Human karyotype

    Homologous chromosomes? Exploring human sex chromosomes, sex determination and sex reversal using bioinformatics...

    Learning Objectives
    Students successfully completing this lesson will:
    • Practice navigating an online bioinformatics resource and identify evidence relevant to solving investigation questions
    • Contrast the array of genes expected on homologous autosomal chromosomes pairs with the array of genes expected on sex chromosome pairs
    • Use bioinformatics evidence to defend the definition of homologous chromosomes
    • Define chromosomal sex and defend the definition using experimental data
    • Investigate the genetic basis of human chromosomal sex determination
    • Identify at least two genetic mutations can lead to sex reversal
  • Student-generated targeting construct from the construct ribbon parts

    Make It Stick: Teaching Gene Targeting with Ribbons and Fasteners

    Learning Objectives
    • Students will be able to design targeting constructs.
    • Students will be able to predict changes to the gene locus after homologous recombination.
    • Students will be able to design experiments to answer a biological question (e.g., "Design an experiment to test if the expression of gene X is necessary for limb development").
  • Multiple sequence alignment of homologous cytochrome C protein sequences using Jalview viewer.

    Sequence Similarity: An inquiry based and "under the hood" approach for incorporating molecular sequence...

    Learning Objectives
    At the end of this lesson, students will be able to:
    • Define similarity in a non-biological and biological sense when provided with two strings of letters.
    • Quantify the similarity between two gene/protein sequences.
    • Explain how a substitution matrix is used to quantify similarity.
    • Calculate amino acid similarity scores using a scoring matrix.
    • Demonstrate how to access genomic data (e.g., from NCBI nucleotide and protein databases).
    • Demonstrate how to use bioinformatics tools to analyze genomic data (e.g., BLASTP), explain a simplified BLAST search algorithm including how similarity is used to perform a BLAST search, and how to evaluate the results of a BLAST search.
    • Create a nearest-neighbor distance matrix.
    • Create a multiple sequence alignment using a nearest-neighbor distance matrix and a phylogram based on similarity of amino acid sequences.
    • Use appropriate bioinformatics sequence alignment tools to investigate a biological question.
  • Hydrozoan polyps on a hermit-crab shell (photo by Tiffany Galush)

    A new approach to course-based research using a hermit crab-hydrozoan symbiosis

    Learning Objectives
    Students will be able to:
    • define different types of symbiotic interactions, with specific examples.
    • summarize and critically evaluate contemporary primary literature relevant to ecological symbioses, in particular that between hermit crabs and Hydractinia spp.
    • articulate a question, based on observations of a natural phenomenon (in this example, the hermit crab-Hydractinia interaction).
    • articulate a testable hypothesis, based on their own observations and read of the literature.
    • design appropriate experimental or observational studies to address their hypotheses.
    • collect and interpret data in light of their hypotheses.
    • problem-solve and troubleshoot issues that arise during their experiment.
    • communicate scientific results, both orally and in written form.
  • Sample Student Growth Curve. This image shows a yeast growth curve generated by a student in our lab, superimposed on an image of Saccharomyces cerevisiae cells.

    Using Yeast to Make Scientists: A Six-Week Student-Driven Research Project for the Cell Biology Laboratory

    Learning Objectives
    • Learn about basic S. cerevisiae biology
    • Use sterile technique
    • Perform a yeast viability assay
    • Use a spectrophotometer to measure growth of S. cerevisiae
    • Perform a literature search
    • Calculate concentrations of chemicals appropriate for S. cerevisiae
    • Generate S. cerevisiae growth curves
    • Troubleshoot experimental difficulties
    • Perform statistical analysis
    • Present findings to an audience
  • blind cave fish
  • Students engaged in building the PCR model

    A Close-Up Look at PCR

    Learning Objectives
    At the end of this lesson students will be able to...
    • Describe the role of a primer in PCR
    • Predict sequence and length of PCR product based on primer sequences
    • Recognize that primers are incorporated into the final PCR products and explain why
    • Identify covalent and hydrogen bonds formed and broken during PCR
    • Predict the structure of PCR products after each cycle of the reaction
    • Explain why amplification proceeds exponentially
  • SNP model by David Eccles (gringer) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY 4.0 (http://creativecommons.org/licenses/by/4.0)], via Wikimedia Commons

    Exploration of the Human Genome by Investigation of Personalized SNPs

    Learning Objectives
    Students successfully completing this lesson will be able to:
    • Effectively use the bioinformatics databases (SNPedia, the UCSC Genome Browser, and NCBI) to explore SNPs of interest within the human genome.
    • Identify three health-related SNPs of personal interest and use the UCSC Genome Browser to define their precise chromosomal locations and determine whether they lie within a gene or are intergenic.
    • Establish a list of all genome-wide association studies correlated with a particular health-related SNP.
    • Predict which model organism would be most appropriate for conducting further research on a human disease.
  • Students present their posters to classmates and instructors during a poster fair.

    Discovery Poster Project

    Learning Objectives
    Students will be able to:
    • identify and learn about a scientific research discovery of interest to them using popular press articles and the primary literature
    • find a group on campus doing research that aligns with their interests and communicate with the faculty leader of that group
    • create and present a poster that synthesizes their knowledge of the research beyond the discovery
  • A pair of homologous chromosomes.

    Meiosis: A Play in Three Acts, Starring DNA Sequence

    Learning Objectives
    • Students will be able to identify sister chromatids and homologous chromosomes at different stages of meiosis.
    • Students will be able to identify haploid and diploid cells, whether or not the chromosomes are replicated.
    • Students will be able to explain why homologous chromosomes must pair during meiosis.
    • Students will be able to relate DNA sequence similarity to chromosomal structures.
    • Students will be able to identify crossing over as the key to proper pairing of homologous chromosomes during meiosis.
    • Students will be able to predict the outcomes of meiosis for a particular individual or cell.
  • Normal Arabidopsis plants (A) have flat, spatula shaped leaves. asymmetric leaves2 (as2) mutant plants (B) have leaves that are curled under and slightly twisted. asymmetric leaves1(as1) mutant plants (C) have leaves that are curled under and twisted but also have reduced petioles.  In the laboratory activities I present, students analyze the sequence of the as1 and as2 alleles and computationally model the wild-type and mutant proteins. Visualizing the 3-D structure of the proteins helps students understan

    Using computational molecular modeling software to demonstrate how DNA mutations cause phenotypes

    Learning Objectives
    Students successfully completing this lesson will:
    1. Practice basic molecular biology laboratory skills such as DNA isolation, PCR, and gel electrophoresis.
    2. Gather and analyze quantitative and qualitative scientific data and present it in figures.
    3. Use bioinformatics to analyze DNA sequences and obtain protein sequences for molecular modeling.
    4. Make and analyze three-dimensional (3-D) protein models using molecular modeling software.
    5. Write a laboratory report using the collected data to explain how mutations in the DNA cause changes in protein structure/function which lead to mutant phenotypes.
  • Experimental design schematic
  • Bacteria growing on petri dish

    You and Your Oral Microflora: Introducing non-biology majors to their “forgotten organ”

    Learning Objectives
    Students will be able to:
    • Explain both beneficial and detrimental roles of microbes in human health.
    • Compare and contrast DNA replication as it occurs inside a cell versus in a test tube
    • Identify an unknown sequence of DNA by performing a BLAST search
    • Navigate sources of scientific information to assess the accuracy of their experimental techniques
  • Students using the Understanding Eukaryotic Genes curriculum to construct a gene model. Students are working as a pair to complete each Module using classroom computers.

    An undergraduate bioinformatics curriculum that teaches eukaryotic gene structure

    Learning Objectives
    Module 1
    • Demonstrate basic skills in using the UCSC Genome Browser to navigate to a genomic region and to control the display settings for different evidence tracks.
    • Explain the relationships among DNA, pre-mRNA, mRNA, and protein.
    Module 2
    • Describe how a primary transcript (pre-mRNA) can be synthesized using a DNA molecule as the template.
    • Explain the importance of the 5' and 3' regions of the gene for initiation and termination of transcription by RNA polymerase II.
    • Identify the beginning and the end of a transcript using the capabilities of the genome browser.
    Module 3
    • Explain how the primary transcript generated by RNA polymerase II is processed to become a mature mRNA, using the sequence signals identified in Module 2.
    • Use the genome browser to analyze the relationships among:
    • pre-mRNA
    • 5' capping
    • 3' polyadenylation
    • splicing
    • mRNA
    Module 4
    • Identify splice donor and acceptor sites that are best supported by RNA-Seq data and TopHat splice junction predictions.
    • Utilize the canonical splice donor and splice acceptor sequences to identify intron-exon boundaries.
    Module 5
    • Determine the codons for specific amino acids and identify reading frames by examining the Base Position track in the genome browser.
    • Assemble exons to maintain the open reading frame (ORF) for a given gene.
    • Define the phases of the splice donor and acceptor sites and describe how they impact the maintenance of the ORF.
    • Identify the start and stop codons of an assembled ORF.
    Module 6
    • Demonstrate how alternative splicing of a gene can lead to different mRNAs.
    • Show how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.
  • Grow the Gradient game board. A student moves game pieces on the game board as they learn how the loop of Henle creates a salt concentration gradient in the medulla.

    Grow the Gradient: An interactive countercurrent multiplier game

    Learning Objectives
    • Students will be able to simulate the movement of water and sodium at each region of the loop of Henle.
    • Students will be able to associate osmosis and active transport with movement of water/solutes at each region of the loop of Henle.
    • Students will be able to model how the descending and ascending limbs of the loop of Henle maintain a concentration gradient within the medulla.
    • Students will be able to predict the effects of altering normal water and salt movement out of the loop of Henle on the salt concentration of the medulla, urine concentration, and urine volume.
    Advanced Learning Objectives for Extensions
    • Students will be able to predict the impact of the length of the loop of Henle on the magnitude of the concentration gradient within the medulla.
    • Students will be able to predict the length of the loop of Henle in organisms from different habitats.
  • In small groups students brainstorm a list of responses to the prompt and then exchange their lists with another group to circle sex characteristics and star gender characteristics.  The image has whiteboards completed by students.

    Sex and gender: What does it mean to be female or male?

    Learning Objectives
    • Students will be able to distinguish between sex and gender, and apply each term appropriately.
    • Students will be able to compare and contrast levels of sexual determination.
    • Students will be able to critique societal misrepresentations surrounding sex, gender, and gender identity.
  • A photo of grizzly bears fishing in the McNeil Falls in Alaska, taken using BearCam by Lawrence Griffing.

    Authentic Ecological Inquiries Using BearCam Archives

    Learning Objectives
    Students will be able to:
    • conduct an authentic ecological inquiry including
      • generate a testable hypothesis based on observations,
      • design investigation with appropriate sampling selection and variables,
      • collect and analyze data following the design, and
      • interpret results and draw conclusions based on the evidence.
    • write a research report with appropriate structure and style.
    • evaluate the quality of inquiry reports using a rubric.
    • conduct peer review to evaluate and provide feedback to others' work.
    • revise the inquiry report based on peer feedback and self-assessment.
  • Strawberries

    The Case of the Missing Strawberries: RFLP analysis

    Learning Objectives
    Students will be able to:
    • Describe the relationship of cells, chromosomes, and DNA.
    • Isolate DNA from strawberries.
    • Digest DNA with restriction enzymes.
    • Perform gel electrophoresis.
    • Design an experiment to compare DNAs by RFLP analysis.
    • Predict results of RFLP analysis.
    • Interpret results of RFLP analysis.
    • Use appropriate safety procedures in the lab.
  • Reprinted by permission from Macmillan Publishers Ltd.

    A Hands-on Introduction to Hidden Markov Models

    Learning Objectives
    • Students will be able to process unannotated genomic data using ab initio gene finders as well as other inputs.
    • Students will be able to defend the proposed gene annotation.
    • Students will reflect on the other uses for HMMs.
  • Two cells stained

    Bad Cell Reception? Using a cell part activity to help students appreciate cell biology, with an improved data plan and...

    Learning Objectives
    • Identify cell parts and explain their function
    • Explain how defects in a cell part can result in human disease
    • Generate thought-provoking questions that expand upon existing knowledge
    • Create a hypothesis and plan an experiment to answer a cell part question
    • Find and reference relevant cell biology journal articles
  • Teaching Genetic Linkage and Recombination through Mapping with Molecular Markers

    Learning Objectives
    Students will be able to:
    • Explain how recombination can lead to new combinations of linked alleles.
    • Explain how molecular markers (such as microsatellites) can be used to map the location of genes/loci, including what crosses would be informative and why.
    • Explain how banding patterns on an electrophoresis gel represent the segregation of alleles during meiosis.
    • Predict how recombination frequency between two linked loci affects the genotype frequencies of the products of meiosis compared to loci that are unlinked (or very tightly linked).
    • Analyze data from a cross (phenotypes and/or genotypes) to determine if the cross involves linked genes.
    • Calculate the map distance between linked genes using data from genetic crosses, such as gel electrophoresis banding patterns.
    • Justify conclusions about genetic linkage by describing the information in the data that allows you to determine genes are linked.
  • Structure of protein ADA2

    Understanding Protein Domains: A Modular Approach

    Learning Objectives
    • Students will be able to compare protein sequences and identify conserved regions and putative domains.
    • Students will be able to obtain, examine, and compare structural models of protein domains.
    • Students will be able to interpret data on protein interactions (in vitro pull-down and in vitro and in vivo functional assays)
    • Students will be able to propose experiments to test protein interactions.
  • Model skeleton

    Plotting Cranial and Spinal Nerve Pathways in a Human Anatomy Lab

    Learning Objectives
    • Identify and describe the functions of cranial and spinal nerves
    • Identify cranial and spinal nerve origination points and what structures they innervate
    • Trace the routes that cranial and spinal nerves take throughout the body
  • Sodium-Potassium pump

    Lights, Camera, Acting Transport! Using role-play to teach membrane transport

    Learning Objectives
    At the end of this activity, students should be able to:
    • Compare and contrast the mechanisms of simple diffusion, facilitated diffusion, and active transport (both primary and secondary).
    • Identify, and provide a rationale for, the mechanism(s) by which various substances cross the plasma membrane.
    • Describe the steps involved in the transport of ions by the Na+/K+ pump, and explain the importance of electrogenic pumps to the generation and maintenance of membrane potentials.
    • Explain the function of electrochemical gradients as potential energy sources specifically used in secondary active transport.
    • Relate each molecule or ion transported by the Na+/glucose cotransporter (SGLT1) to its own concentration or electrochemical gradient, and describe which molecules travel with and against these gradients.
  • Structure of protein ABCB6

    Investigating the Function of a Transport Protein: Where is ABCB6 Located in Human Cells?

    Learning Objectives
    At the end of this activity students will be able to:
    • describe the use of two common research techniques for studying proteins: SDS-PAGE and immunoblot analysis.
    • determine a protein’s subcellular location based on results from: 1) immunoblotting after differential centrifugation, and 2) immunofluorescence microscopy.
    • analyze protein localization data based on the limitations of differential centrifugation and immunofluorescence microscopy.
  • Using the Cell Engineer/Detective Approach to Explore Cell Structure and Function

    Learning Objectives
    Students will be able to:
    • Identify the major cell organelles
    • List the major functions of the organelles
    • Predict how changes in organelle/cell structure could alter cellular function
    • Explain how overall cellular function is dependent upon organelles/cell structure
    • Relate cell structure to everyday contexts
  • This is the question when working with pH and pKa. This is original artwork by the author and no copyright is violated.

    Taking the Hassle out of Hasselbalch

    Learning Objectives
    Students will be able to:
    1. Characterize an aqueous environment as acidic or basic.
    2. Explain that pKa is a measure of how easy it is to remove a proton from a molecule.
    3. Predict ionization state of a molecule at a particular pH based on its pKa (qualitative use of the Henderson-Hasselbalch equation).
    4. Calculate the ratio of protonated/unprotonated forms of ionizable groups depending on chemical characteristics and /or environment pH (quantitative use of the Henderson-Hasselbalch equation).
    5. Apply this knowledge in a medical context.
  • Modeling the Research Process: Authentic human physiology research in a large non-majors course

    Learning Objectives
    Students will be able to:
    • Read current scientific literature
    • Formulate testable hypotheses
    • Design an experimental procedure to test their hypothesis
    • Make scientific observations
    • Analyze and interpret data
    • Communicate results visually and orally