Skip to main content

You are here

Filters

Search found 11 items

Search

  • This collage contains original images taken by the course instructor. The images show a microscopic view of stomata on the underside of a Brassica rapa leaf (A), B. rapa plants in their growth trays (B), a flowering B. rapa plant (C), and different concentrations of foliar protein (D). Photos edited via Microsoft Windows Photo Editor and Phototastic Collage Maker.

    A flexible, multi-week approach to plant biology - How will plants respond to higher levels of CO2?

    Learning Objectives
    Students will be able to:
    • Apply findings from each week's lesson to make predictions and informed hypotheses about the next week's lesson.
    • Keep a detailed laboratory notebook.
    • Write and peer-edit the sections of a scientific paper, and collaboratively write an entire lab report in the form of a scientific research paper.
    • Search for, find, and read scientific research papers.
    • Work together as a team to conduct experiments.
    • Connect findings and ideas from each week's lesson to get a broader understanding of how plants will respond to higher levels of CO2 (e.g., stomatal density, photosynthetic/respiratory rates, foliar protein concentrations, growth, and resource allocation).
    Note: Additional, more specific objectives are included with each of the four lessons (Supporting Files S1-S4)
  • Medical students at a fair. Credit: Danieladelrio

    Casting a Wide Net via Case Studies: Educating across the undergraduate to medical school continuum in the biological...

    Learning Objectives
    At the end of this lesson, the student should be able to:
    • Consider the potential advantages and disadvantages of widespread use of whole genome sequencing and direct-to-consumer genetic testing.
    • Explore the critical need to maintain privacy of individual genetic test results to protect patient interests.
    • Dissect the nuances of reporting whole genome sequencing results.
    • Recognize the economic ramifications of precision medicine strategies.
    • Formulate a deeper understanding of the ethical dimensions of emerging genetic testing technologies.
  • blind cave fish
  • Image from http://www.epa.gov/airdata/ad_maps.html

    Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues

    Learning Objectives
    Students will be able to:
    • Describe various parameters of air quality that can negatively impact human health, list priority air pollutants, and interpret the EPA Air Quality Index as it relates to human health.
    • Identify an air quality problem that varies on spatial and/or temporal scales that can be addressed using publicly available U.S. EPA air data.
    • Collect appropriate U.S. EPA Airdata information needed to answer that/those questions, using the U.S. EPA Airdata website data mining tools.
    • Analyze the data as needed to address or answer their question(s).
    • Interpret data and draw conclusions regarding air quality levels and/or impacts on human and public health.
    • Communicate results in the form of a scientific paper.
  • American coot (Fulica Americana) family at the Cloisters City Park pond in Morrow Bay, CA. "Mike" Michael L. Baird [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons, https://upload.wikimedia.org/wikipedia/commons/d/db/Fulica_americana3.jpg

    Knowing your own: A classroom case study using the scientific method to investigate how birds learn to recognize their...

    Learning Objectives
    • Students will be able to identify and describe the steps of the scientific method.
    • Students will be able to develop hypotheses and predictions.
    • Students will be able to construct and interpret bar graphs based on data and predictions.
    • Students will be able to draw conclusions from data presented in graphical form.
  • An active-learning lesson that targets student understanding of population growth in ecology

    Learning Objectives
    Students will be able to:
    • Calculate and compare population density and abundance.
    • Identify whether a growth curve describes exponential, linear, and/or logistic growth.
    • Describe and calculate a population's growth rate using linear, exponential, and logistic models.
    • Explain the influence of carrying capacity and population density on growth rate.
  • A photo of grizzly bears fishing in the McNeil Falls in Alaska, taken using BearCam by Lawrence Griffing.

    Authentic Ecological Inquiries Using BearCam Archives

    Learning Objectives
    Students will be able to:
    • conduct an authentic ecological inquiry including
      • generate a testable hypothesis based on observations,
      • design investigation with appropriate sampling selection and variables,
      • collect and analyze data following the design, and
      • interpret results and draw conclusions based on the evidence.
    • write a research report with appropriate structure and style.
    • evaluate the quality of inquiry reports using a rubric.
    • conduct peer review to evaluate and provide feedback to others' work.
    • revise the inquiry report based on peer feedback and self-assessment.
  • DNA

    Why do Some People Inherit a Predisposition to Cancer? A small group activity on cancer genetics

    Learning Objectives
    At the end of this activity, we expect students will be able to:
    1. Use family pedigrees and additional genetic information to determine inheritance patterns for hereditary forms of cancer
    2. Explain why a person with or without cancer can pass on a mutant allele to the next generation and how that impacts probability calculations
    3. Distinguish between proto-oncogenes and tumor suppressor genes
  • Using Place-Based Economically Relevant Organisms to Improve Student Understanding of the Roles of Carbon Dioxide,...

    Learning Objectives
    At the end of this lesson, students will be able to:
    • Describe the roles of light energy and carbon dioxide in photosynthetic organisms.
    • Identify the effect of nutrients on the growth of photosynthetic organisms.
    • Describe global cycles in atmospheric carbon dioxide levels and how they relate to photosynthetic organisms.
  • Image from a clicker-based case study on muscular dystrophy and the effect of mutations on the processes in the central dogma.

    A clicker-based case study that untangles student thinking about the processes in the central dogma

    Learning Objectives
    Students will be able to:
    • explain the differences between silent (no change in the resulting amino acid sequence), missense (a change in the amino acid sequence), and nonsense (a change resulting in a premature stop codon) mutations.
    • differentiate between how information is encoded during DNA replication, transcription, and translation.
    • evaluate how different types of mutations (silent, missense, and nonsense) and the location of those mutations (intron, exon, and promoter) differentially affect the processes in the central dogma.
    • predict the molecular (DNA size, mRNA length, mRNA abundance, and protein length) and/or phenotypic consequences of mutations.
  • This is the question when working with pH and pKa. This is original artwork by the author and no copyright is violated.

    Taking the Hassle out of Hasselbalch

    Learning Objectives
    Students will be able to:
    1. Characterize an aqueous environment as acidic or basic.
    2. Explain that pKa is a measure of how easy it is to remove a proton from a molecule.
    3. Predict ionization state of a molecule at a particular pH based on its pKa (qualitative use of the Henderson-Hasselbalch equation).
    4. Calculate the ratio of protonated/unprotonated forms of ionizable groups depending on chemical characteristics and /or environment pH (quantitative use of the Henderson-Hasselbalch equation).
    5. Apply this knowledge in a medical context.