Skip to main content

You are here

Filters

Search

  • 3D Print Model of the Mars Curiosity Rover, printed from NASA 3D Resources (https://nasa3d.arc.nasa.gov/detail/mars-rover-curiosity)

    Exploring the March to Mars Using 3D Print Models

    Learning Objectives
    • Students will be able to describe the major aspects of the Mars Curiosity Rover missions.
    • Students will be able to synthesize information learned from a classroom jigsaw activity on the Mars Curiosity Rover missions.
    • Students will be able to work in teams to plan a future manned mission to Mars.
    • Students will be able to summarize their reports to the class.
  • blind cave fish
  • DNA barcoding research in first-year biology curriculum

    CURE-all: Large Scale Implementation of Authentic DNA Barcoding Research into First-Year Biology Curriculum

    Learning Objectives
    Students will be able to: Week 1-4: Fundamentals of Science and Biology
    • List the major processes involved in scientific discovery
    • List the different types of scientific studies and which types can establish causation
    • Design experiments with appropriate controls
    • Create and evaluate phylogenetic trees
    • Define taxonomy and phylogeny and explain their relationship to each other
    • Explain DNA sequence divergence and how it applies to evolutionary relationships and DNA barcoding
    Week 5-6: Ecology
    • Define and measure biodiversity and explain its importance
    • Catalog organisms using the morphospecies concept
    • Geographically map organisms using smartphones and an online mapping program
    • Calculate metrics of species diversity using spreadsheet software
    • Use spreadsheet software to quantify and graph biodiversity at forest edges vs. interiors
    • Write a formal lab report
    Week 7-11: Cellular and Molecular Biology
    • Extract, amplify, visualize and sequence DNA using standard molecular techniques (PCR, gel electrophoresis, Sanger sequencing)
    • Explain how DNA extraction, PCR, gel electrophoresis, and Sanger sequencing work at the molecular level
    Week 12-13: Bioinformatics
    • Trim and assemble raw DNA sequence data
    • Taxonomically identify DNA sequences isolated from unknown organisms using BLAST
    • Visualize sequence data relationships using sequence alignments and gene-based phylogenetic trees
    • Map and report data in a publicly available online database
    • Share data in a formal scientific poster
  • Confocal microscope image of a mouse egg that is arrested at metaphase of meiosis II. Green, tubulin staining of meiotic spindle; red, actin staining of egg membrane; blue, DNA. This image was obtained on a Zeiss 510 Meta confocal microscope in the Department of Genetics at Rutgers University

    Sex-specific differences in Meiosis: Real-world applications

    Learning Objectives
    After completion of the lesson students will be able to:
    1. Describe the differences between female and male meiosis.
    2. Interpret graphical data to make decisions relevant to medical practices.
    3. Develop a hypothesis that explains the difference in incidence of aneuploidy in gametes between males and females.
  • Fully annotated mitochondrial genome of a lichenized fungal species (Cladonia subtenuis).  This represents a visual representation of the final project result of the lesson plan. Students will submit their annotation to NCBI (GenBank) and upon acceptance of their annotation, they typically add this publicly available resource into their resume.

    A CURE-based approach to teaching genomics using mitochondrial genomes

    Learning Objectives
    • Install the appropriate programs such as Putty and WinSCP.
    • Navigate NCBI's website including their different BLAST programs (e.g., blastn, tblastx, blastp and blastx)
    • Use command-line BLAST to identify mitochondrial contigs within a whole genome assembly
    • Filter the desired sequence (using grep) and move the assembled mitochondrial genome onto your own computer (using FTP or SCP)
    • Error-correct contigs (bwa mem, samtools tview), connect and circularize organellar contigs (extending from filtered reads)
    • Transform assembled sequences into annotated genomes
    • Orient to canonical start locations in the mitochondrial genome (cox1)
    • Identify the boundaries of all coding components of the mitochondrial genome using BLAST, including: Protein coding genes (BLASTx and tBLASTX), tRNAs (proprietary programs such as tRNAscan), rRNAs (BLASTn, Chlorobox), ORFs (NCBI's ORFFinder)
    • Deposit annotation onto genome repository (NCBI)
    • Update CV/resume to reflect bioinformatics skills learned in this lesson
  • DNA

    Why do Some People Inherit a Predisposition to Cancer? A small group activity on cancer genetics

    Learning Objectives
    At the end of this activity, we expect students will be able to:
    1. Use family pedigrees and additional genetic information to determine inheritance patterns for hereditary forms of cancer
    2. Explain why a person with or without cancer can pass on a mutant allele to the next generation and how that impacts probability calculations
    3. Distinguish between proto-oncogenes and tumor suppressor genes
  • Medical students at a fair. Credit: Danieladelrio

    Casting a Wide Net via Case Studies: Educating across the undergraduate to medical school continuum in the biological...

    Learning Objectives
    At the end of this lesson, the student should be able to:
    • Consider the potential advantages and disadvantages of widespread use of whole genome sequencing and direct-to-consumer genetic testing.
    • Explore the critical need to maintain privacy of individual genetic test results to protect patient interests.
    • Dissect the nuances of reporting whole genome sequencing results.
    • Recognize the economic ramifications of precision medicine strategies.
    • Formulate a deeper understanding of the ethical dimensions of emerging genetic testing technologies.
  • DNA Detective: Genotype to Phenotype. A Bioinformatics Workshop for Middle School to College. In this image, students are selecting the mutant Arabidopsis plant defective for the “mystery” gene that they identified and annotated through the DNA Subway Red Line.
  • Students at Century College use gel electrophoresis to analyze PCR samples in order to detect a group of ampicillin-resistance genes.

    Antibiotic Resistance Genes Detection in Environmental Samples

    Learning Objectives
    After completing this laboratory series, students will be able to:
    • apply the scientific method in formulating a hypothesis, designing a controlled experiment using appropriate molecular biology techniques, and analyzing experimental results;
    • conduct a molecular biology experiment and explain the principles behind methodologies, such as accurate use of micropipettes, PCR (polymerase chain reaction), and gel electrophoresis;
    • determine the presence of antibiotic-resistance genes in environmental samples by analyzing PCR products using gel electrophoresis;
    • explain mechanisms of microbial antibiotic resistance;
    • contribute data to the Antibiotic Resistance Genes Network;
    • define and apply key concepts of antibiotic resistance and gene identification via PCR fragment size.