Skip to main content

You are here

Filters

Search found 14 items

Assessment Type

Search

  • This collage contains original images taken by the course instructor. The images show a microscopic view of stomata on the underside of a Brassica rapa leaf (A), B. rapa plants in their growth trays (B), a flowering B. rapa plant (C), and different concentrations of foliar protein (D). Photos edited via Microsoft Windows Photo Editor and Phototastic Collage Maker.

    A flexible, multi-week approach to plant biology - How will plants respond to higher levels of CO2?

    Learning Objectives
    Students will be able to:
    • Apply findings from each week's lesson to make predictions and informed hypotheses about the next week's lesson.
    • Keep a detailed laboratory notebook.
    • Write and peer-edit the sections of a scientific paper, and collaboratively write an entire lab report in the form of a scientific research paper.
    • Search for, find, and read scientific research papers.
    • Work together as a team to conduct experiments.
    • Connect findings and ideas from each week's lesson to get a broader understanding of how plants will respond to higher levels of CO2 (e.g., stomatal density, photosynthetic/respiratory rates, foliar protein concentrations, growth, and resource allocation).
    Note: Additional, more specific objectives are included with each of the four lessons (Supporting Files S1-S4)
  • 3D Print Models: A collection of 3D models printed from online repository files.
  • Students using the Understanding Eukaryotic Genes curriculum to construct a gene model. Students are working as a pair to complete each Module using classroom computers.

    An undergraduate bioinformatics curriculum that teaches eukaryotic gene structure

    Learning Objectives
    Module 1
    • Demonstrate basic skills in using the UCSC Genome Browser to navigate to a genomic region and to control the display settings for different evidence tracks.
    • Explain the relationships among DNA, pre-mRNA, mRNA, and protein.
    Module 2
    • Describe how a primary transcript (pre-mRNA) can be synthesized using a DNA molecule as the template.
    • Explain the importance of the 5' and 3' regions of the gene for initiation and termination of transcription by RNA polymerase II.
    • Identify the beginning and the end of a transcript using the capabilities of the genome browser.
    Module 3
    • Explain how the primary transcript generated by RNA polymerase II is processed to become a mature mRNA, using the sequence signals identified in Module 2.
    • Use the genome browser to analyze the relationships among:
    • pre-mRNA
    • 5' capping
    • 3' polyadenylation
    • splicing
    • mRNA
    Module 4
    • Identify splice donor and acceptor sites that are best supported by RNA-Seq data and TopHat splice junction predictions.
    • Utilize the canonical splice donor and splice acceptor sequences to identify intron-exon boundaries.
    Module 5
    • Determine the codons for specific amino acids and identify reading frames by examining the Base Position track in the genome browser.
    • Assemble exons to maintain the open reading frame (ORF) for a given gene.
    • Define the phases of the splice donor and acceptor sites and describe how they impact the maintenance of the ORF.
    • Identify the start and stop codons of an assembled ORF.
    Module 6
    • Demonstrate how alternative splicing of a gene can lead to different mRNAs.
    • Show how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.
  • Hydrozoan polyps on a hermit-crab shell (photo by Tiffany Galush)

    A new approach to course-based research using a hermit crab-hydrozoan symbiosis

    Learning Objectives
    Students will be able to:
    • define different types of symbiotic interactions, with specific examples.
    • summarize and critically evaluate contemporary primary literature relevant to ecological symbioses, in particular that between hermit crabs and Hydractinia spp.
    • articulate a question, based on observations of a natural phenomenon (in this example, the hermit crab-Hydractinia interaction).
    • articulate a testable hypothesis, based on their own observations and read of the literature.
    • design appropriate experimental or observational studies to address their hypotheses.
    • collect and interpret data in light of their hypotheses.
    • problem-solve and troubleshoot issues that arise during their experiment.
    • communicate scientific results, both orally and in written form.
  • This is a representation of what might happen during peer discussion.

    In-class peer grading of daily quizzes increases feedback opportunities

    Learning Objectives
    Each of these objectives are illustrated with a succinct slide presentation or other supplemental material available ahead of class time through the course administration system. Learners found it particularly helpful to have video clips that remind them of mathematical manipulations available (in the above example objective c). Students understand that foundational objectives tend to be the focus of the quiz (objectives a-d) and that others will be given more time to work on together in class (objectives e-g), but I don't specify this exactly to reduce temptation that 'gamers' take a shortcut that would impact their group work negatively later on. However, the assignment for a focused graded group activity is posted as well, so it is clear what we are working towards; if desired individuals could prepare ahead of the class.
  • Students participating in the peer review process. Practicing the writing of scientific manuscripts prepares students to understand and engage in the primary literature they encounter.
  • Students at Century College use gel electrophoresis to analyze PCR samples in order to detect a group of ampicillin-resistance genes.

    Antibiotic Resistance Genes Detection in Environmental Samples

    Learning Objectives
    After completing this laboratory series, students will be able to:
    • apply the scientific method in formulating a hypothesis, designing a controlled experiment using appropriate molecular biology techniques, and analyzing experimental results;
    • conduct a molecular biology experiment and explain the principles behind methodologies, such as accurate use of micropipettes, PCR (polymerase chain reaction), and gel electrophoresis;
    • determine the presence of antibiotic-resistance genes in environmental samples by analyzing PCR products using gel electrophoresis;
    • explain mechanisms of microbial antibiotic resistance;
    • contribute data to the Antibiotic Resistance Genes Network;
    • define and apply key concepts of antibiotic resistance and gene identification via PCR fragment size.
  • Reprinted by permission from Macmillan Publishers Ltd.

    A Hands-on Introduction to Hidden Markov Models

    Learning Objectives
    • Students will be able to process unannotated genomic data using ab initio gene finders as well as other inputs.
    • Students will be able to defend the proposed gene annotation.
    • Students will reflect on the other uses for HMMs.
  • Image from http://www.epa.gov/airdata/ad_maps.html

    Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues

    Learning Objectives
    Students will be able to:
    • Describe various parameters of air quality that can negatively impact human health, list priority air pollutants, and interpret the EPA Air Quality Index as it relates to human health.
    • Identify an air quality problem that varies on spatial and/or temporal scales that can be addressed using publicly available U.S. EPA air data.
    • Collect appropriate U.S. EPA Airdata information needed to answer that/those questions, using the U.S. EPA Airdata website data mining tools.
    • Analyze the data as needed to address or answer their question(s).
    • Interpret data and draw conclusions regarding air quality levels and/or impacts on human and public health.
    • Communicate results in the form of a scientific paper.
  • Modeling the Research Process: Authentic human physiology research in a large non-majors course

    Learning Objectives
    Students will be able to:
    • Read current scientific literature
    • Formulate testable hypotheses
    • Design an experimental procedure to test their hypothesis
    • Make scientific observations
    • Analyze and interpret data
    • Communicate results visually and orally
  • Using the Cell Engineer/Detective Approach to Explore Cell Structure and Function

    Learning Objectives
    Students will be able to:
    • Identify the major cell organelles
    • List the major functions of the organelles
    • Predict how changes in organelle/cell structure could alter cellular function
    • Explain how overall cellular function is dependent upon organelles/cell structure
    • Relate cell structure to everyday contexts
  • Bacteria growing on petri dish

    You and Your Oral Microflora: Introducing non-biology majors to their “forgotten organ”

    Learning Objectives
    Students will be able to:
    • Explain both beneficial and detrimental roles of microbes in human health.
    • Compare and contrast DNA replication as it occurs inside a cell versus in a test tube
    • Identify an unknown sequence of DNA by performing a BLAST search
    • Navigate sources of scientific information to assess the accuracy of their experimental techniques