Skip to main content

You are here

Filters

Search found 14 items

Search

  • Plant ecology students surveying vegetation at Red Hills, CA, spring 2012.  From left to right are G.L, F.D, A.M., and R.P.  Photo used with permission from all students.

    Out of Your Seat and on Your Feet! An adaptable course-based research project in plant ecology for advanced students

    Learning Objectives
    Students will:
    • Articulate testable hypotheses. (Lab 8, final presentation/paper, in-class exercises)
    • Analyze data to determine the level of support for articulated hypotheses. (Labs 4-7, final presentation/paper)
    • Identify multiple species of plants in the field quickly and accurately. (Labs 2-3, field trip)
    • Measure environmental variables and sample vegetation in the field. (Labs 2-3, field trip)
    • Analyze soil samples using a variety of low-tech lab techniques. (Open labs after field trip)
    • Use multiple statistical techniques to analyze data for patterns. (Labs 4-8, final presentation/paper)
    • Interpret statistical analyses to distinguish between strong and weak interactions in a biological system. (Labs 4-7, final presentation/paper)
    • Develop and present a conference-style presentation in a public forum. (Lab 8, final presentation/paper)
    • Write a publication-ready research paper communicating findings and displaying data. (Lab 8, final presentation/paper)
  • Neutrophils in a Danio rerio Embryo. Student-generated picture of a wounded zebrafish embryo that was stained to show the neutrophils (small black dots) that had migrated toward the wound site on the fin.

    Inexpensive Cell Migration Inquiry Lab using Zebrafish

    Learning Objectives
    Students will:
    • formulate a hypothesis and design an experiment with the proper controls.
    • describe the steps involved in the zebrafish wounding assay (treating zebrafish embryos with drugs or control substances, wounding the embryo, staining the embryo, and counting neutrophils near the wound).
    • summarize results into a figure and write a descriptive figure legend.
    • perform appropriate statistical analysis.
    • interpret results in a discussion that draws connections between the cytoskeleton and cell migration.
    • put data into context by appropriately using information from journal articles in the introduction and discussion of a lab report.
  • 3D Print Models: A collection of 3D models printed from online repository files.
  • Using Undergraduate Molecular Biology Labs to Discover Targets of miRNAs in Humans

    Learning Objectives
    • Use biological databases to generate and compare lists of predicted miR targets, and obtain the mRNA sequence of their selected candidate gene
    • Use bioinformatics tools to design and optimize primer sets for qPCR
  • Students preforming the leaky neuron activity.

    The Leaky Neuron: Understanding synaptic integration using an analogy involving leaky cups

    Learning Objectives
    Students will able to:
    • compare and contrast spatial and temporal summation in terms of the number of presynaptic events and the timing of these events
    • predict the relative contribution to reaching threshold and firing an action potential as a function of distance from the axon hillock
    • predict how the frequency of incoming presynaptic action potentials effects the success of temporal summation of resultant postsynaptic potentials
  • Results formula questions. Shows the five questions that comprise the formula for writing a scientific Results section.
  • SNP model by David Eccles (gringer) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY 4.0 (http://creativecommons.org/licenses/by/4.0)], via Wikimedia Commons

    Exploration of the Human Genome by Investigation of Personalized SNPs

    Learning Objectives
    Students successfully completing this lesson will be able to:
    • Effectively use the bioinformatics databases (SNPedia, the UCSC Genome Browser, and NCBI) to explore SNPs of interest within the human genome.
    • Identify three health-related SNPs of personal interest and use the UCSC Genome Browser to define their precise chromosomal locations and determine whether they lie within a gene or are intergenic.
    • Establish a list of all genome-wide association studies correlated with a particular health-related SNP.
    • Predict which model organism would be most appropriate for conducting further research on a human disease.
  • Adult female Daphnia dentifera. Daphnia spp. make a great study system due to their transparent body and their ease of upkeep in a lab.

    Dynamic Daphnia: An inquiry-based research experience in ecology that teaches the scientific process to first-year...

    Learning Objectives
    Students will be able to:
    • Construct written predictions about 1 factor experiments.
    • Interpret simple (2 variables) figures.
    • Construct simple (2 variables) figures from data.
    • Design simple 1 factor experiments with appropriate controls.
    • Demonstrate proper use of standard laboratory items, including a two-stop pipette, stereomicroscope, and laboratory notebook.
    • Calculate means and standard deviations.
    • Given some scaffolding (instructions), select the correct statistical test for a data set, be able to run a t-test, ANOVA, chi-squared test, and linear regression in Microsoft Excel, and be able to correctly interpret their results.
    • Construct and present a scientific poster.
  • Example image of dividing cells obtained from the Allen Institute for Cell Science 3D Cell Viewer.

    A virtual laboratory on cell division using a publicly-available image database

    Learning Objectives
    • Students will name and describe the salient features and cellular tasks for each stage of cell division.
    • Students will predict the relative durations of the stages of cell division using prior knowledge and facts from assigned readings.
    • Students will describe the relationship between duration of each stage of cell division and the frequency of cells present in each stage of cell division counted in a random sample of images of pluripotent stem cells.
    • Students will identify the stages of cell division present in research-quality images of human pluripotent stem cells in various stages of cell division.
    • Students will quantify, analyze and summarize data on the prevalence of cells at different stages of cell division in randomly sampled cell populations.
    • Students will use data to reflect on and revise predictions.
  • DNA barcoding research in first-year biology curriculum

    CURE-all: Large Scale Implementation of Authentic DNA Barcoding Research into First-Year Biology Curriculum

    Learning Objectives
    Students will be able to: Week 1-4: Fundamentals of Science and Biology
    • List the major processes involved in scientific discovery
    • List the different types of scientific studies and which types can establish causation
    • Design experiments with appropriate controls
    • Create and evaluate phylogenetic trees
    • Define taxonomy and phylogeny and explain their relationship to each other
    • Explain DNA sequence divergence and how it applies to evolutionary relationships and DNA barcoding
    Week 5-6: Ecology
    • Define and measure biodiversity and explain its importance
    • Catalog organisms using the morphospecies concept
    • Geographically map organisms using smartphones and an online mapping program
    • Calculate metrics of species diversity using spreadsheet software
    • Use spreadsheet software to quantify and graph biodiversity at forest edges vs. interiors
    • Write a formal lab report
    Week 7-11: Cellular and Molecular Biology
    • Extract, amplify, visualize and sequence DNA using standard molecular techniques (PCR, gel electrophoresis, Sanger sequencing)
    • Explain how DNA extraction, PCR, gel electrophoresis, and Sanger sequencing work at the molecular level
    Week 12-13: Bioinformatics
    • Trim and assemble raw DNA sequence data
    • Taxonomically identify DNA sequences isolated from unknown organisms using BLAST
    • Visualize sequence data relationships using sequence alignments and gene-based phylogenetic trees
    • Map and report data in a publicly available online database
    • Share data in a formal scientific poster
  • pClone Red Makes Research Look Easy

    Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Introductory Biology (identifying...

    Learning Objectives
    • Describe how cells can produce proteins at the right time and correct amount.
    • Diagram how a repressor works to reduce transcription.
    • Diagram how an activator works to increase transcription.
    • Identify a new promoter from literature and design a method to clone it and test its function.
    • Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments.
    • Design an experiment to verify a new promoter has been cloned into a destination vector.
    • Design an experiment to measure the strength of a promoter.
    • Analyze data showing reporter protein produced and use the data to assess promoter strength.
    • Define type IIs restriction enzymes.
    • Distinguish between type II and type IIs restriction enzymes.
    • Explain how Golden Gate Assembly (GGA) works.
    • Measure the relative strength of a promoter compared to a standard promoter.
  • Using the Cell Engineer/Detective Approach to Explore Cell Structure and Function

    Learning Objectives
    Students will be able to:
    • Identify the major cell organelles
    • List the major functions of the organelles
    • Predict how changes in organelle/cell structure could alter cellular function
    • Explain how overall cellular function is dependent upon organelles/cell structure
    • Relate cell structure to everyday contexts
  • A three-dimensional model of methionine is superimposed on a phase contrast micrograph of Saccharomyces cerevisiae from a log phase culture.

    Follow the Sulfur: Using Yeast Mutants to Study a Metabolic Pathway

    Learning Objectives
    At the end of this lesson, students will be able to:
    • use spot plating techniques to compare the growth of yeast strains on solid culture media.
    • predict the ability of specific met deletion strains to grow on media containing various sulfur sources.
    • predict how mutations in specific genes will affect the concentrations of metabolites in the pathways involved in methionine biosynthesis.