Skip to main content

You are here

Filters

Search found 15 items

Search

  • Plant ecology students surveying vegetation at Red Hills, CA, spring 2012.  From left to right are G.L, F.D, A.M., and R.P.  Photo used with permission from all students.

    Out of Your Seat and on Your Feet! An adaptable course-based research project in plant ecology for advanced students

    Learning Objectives
    Students will:
    • Articulate testable hypotheses. (Lab 8, final presentation/paper, in-class exercises)
    • Analyze data to determine the level of support for articulated hypotheses. (Labs 4-7, final presentation/paper)
    • Identify multiple species of plants in the field quickly and accurately. (Labs 2-3, field trip)
    • Measure environmental variables and sample vegetation in the field. (Labs 2-3, field trip)
    • Analyze soil samples using a variety of low-tech lab techniques. (Open labs after field trip)
    • Use multiple statistical techniques to analyze data for patterns. (Labs 4-8, final presentation/paper)
    • Interpret statistical analyses to distinguish between strong and weak interactions in a biological system. (Labs 4-7, final presentation/paper)
    • Develop and present a conference-style presentation in a public forum. (Lab 8, final presentation/paper)
    • Write a publication-ready research paper communicating findings and displaying data. (Lab 8, final presentation/paper)
  • Hydrozoan polyps on a hermit-crab shell (photo by Tiffany Galush)

    A new approach to course-based research using a hermit crab-hydrozoan symbiosis

    Learning Objectives
    Students will be able to:
    • define different types of symbiotic interactions, with specific examples.
    • summarize and critically evaluate contemporary primary literature relevant to ecological symbioses, in particular that between hermit crabs and Hydractinia spp.
    • articulate a question, based on observations of a natural phenomenon (in this example, the hermit crab-Hydractinia interaction).
    • articulate a testable hypothesis, based on their own observations and read of the literature.
    • design appropriate experimental or observational studies to address their hypotheses.
    • collect and interpret data in light of their hypotheses.
    • problem-solve and troubleshoot issues that arise during their experiment.
    • communicate scientific results, both orally and in written form.
  • Human karyotype

    Homologous chromosomes? Exploring human sex chromosomes, sex determination and sex reversal using bioinformatics...

    Learning Objectives
    Students successfully completing this lesson will:
    • Practice navigating an online bioinformatics resource and identify evidence relevant to solving investigation questions
    • Contrast the array of genes expected on homologous autosomal chromosomes pairs with the array of genes expected on sex chromosome pairs
    • Use bioinformatics evidence to defend the definition of homologous chromosomes
    • Define chromosomal sex and defend the definition using experimental data
    • Investigate the genetic basis of human chromosomal sex determination
    • Identify at least two genetic mutations can lead to sex reversal
  • Students preforming the leaky neuron activity.

    The Leaky Neuron: Understanding synaptic integration using an analogy involving leaky cups

    Learning Objectives
    Students will able to:
    • compare and contrast spatial and temporal summation in terms of the number of presynaptic events and the timing of these events
    • predict the relative contribution to reaching threshold and firing an action potential as a function of distance from the axon hillock
    • predict how the frequency of incoming presynaptic action potentials effects the success of temporal summation of resultant postsynaptic potentials
  • Image from http://www.epa.gov/airdata/ad_maps.html

    Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues

    Learning Objectives
    Students will be able to:
    • Describe various parameters of air quality that can negatively impact human health, list priority air pollutants, and interpret the EPA Air Quality Index as it relates to human health.
    • Identify an air quality problem that varies on spatial and/or temporal scales that can be addressed using publicly available U.S. EPA air data.
    • Collect appropriate U.S. EPA Airdata information needed to answer that/those questions, using the U.S. EPA Airdata website data mining tools.
    • Analyze the data as needed to address or answer their question(s).
    • Interpret data and draw conclusions regarding air quality levels and/or impacts on human and public health.
    • Communicate results in the form of a scientific paper.
  • This collage contains original images taken by the course instructor. The images show a microscopic view of stomata on the underside of a Brassica rapa leaf (A), B. rapa plants in their growth trays (B), a flowering B. rapa plant (C), and different concentrations of foliar protein (D). Photos edited via Microsoft Windows Photo Editor and Phototastic Collage Maker.

    A flexible, multi-week approach to plant biology - How will plants respond to higher levels of CO2?

    Learning Objectives
    Students will be able to:
    • Apply findings from each week's lesson to make predictions and informed hypotheses about the next week's lesson.
    • Keep a detailed laboratory notebook.
    • Write and peer-edit the sections of a scientific paper, and collaboratively write an entire lab report in the form of a scientific research paper.
    • Search for, find, and read scientific research papers.
    • Work together as a team to conduct experiments.
    • Connect findings and ideas from each week's lesson to get a broader understanding of how plants will respond to higher levels of CO2 (e.g., stomatal density, photosynthetic/respiratory rates, foliar protein concentrations, growth, and resource allocation).
    Note: Additional, more specific objectives are included with each of the four lessons (Supporting Files S1-S4)
  • In small groups students brainstorm a list of responses to the prompt and then exchange their lists with another group to circle sex characteristics and star gender characteristics.  The image has whiteboards completed by students.

    Sex and gender: What does it mean to be female or male?

    Learning Objectives
    • Students will be able to distinguish between sex and gender, and apply each term appropriately.
    • Students will be able to compare and contrast levels of sexual determination.
    • Students will be able to critique societal misrepresentations surrounding sex, gender, and gender identity.
  • Strawberries

    The Case of the Missing Strawberries: RFLP analysis

    Learning Objectives
    Students will be able to:
    • Describe the relationship of cells, chromosomes, and DNA.
    • Isolate DNA from strawberries.
    • Digest DNA with restriction enzymes.
    • Perform gel electrophoresis.
    • Design an experiment to compare DNAs by RFLP analysis.
    • Predict results of RFLP analysis.
    • Interpret results of RFLP analysis.
    • Use appropriate safety procedures in the lab.
  • Students using the Understanding Eukaryotic Genes curriculum to construct a gene model. Students are working as a pair to complete each Module using classroom computers.

    An undergraduate bioinformatics curriculum that teaches eukaryotic gene structure

    Learning Objectives
    Module 1
    • Demonstrate basic skills in using the UCSC Genome Browser to navigate to a genomic region and to control the display settings for different evidence tracks.
    • Explain the relationships among DNA, pre-mRNA, mRNA, and protein.
    Module 2
    • Describe how a primary transcript (pre-mRNA) can be synthesized using a DNA molecule as the template.
    • Explain the importance of the 5' and 3' regions of the gene for initiation and termination of transcription by RNA polymerase II.
    • Identify the beginning and the end of a transcript using the capabilities of the genome browser.
    Module 3
    • Explain how the primary transcript generated by RNA polymerase II is processed to become a mature mRNA, using the sequence signals identified in Module 2.
    • Use the genome browser to analyze the relationships among:
    • pre-mRNA
    • 5' capping
    • 3' polyadenylation
    • splicing
    • mRNA
    Module 4
    • Identify splice donor and acceptor sites that are best supported by RNA-Seq data and TopHat splice junction predictions.
    • Utilize the canonical splice donor and splice acceptor sequences to identify intron-exon boundaries.
    Module 5
    • Determine the codons for specific amino acids and identify reading frames by examining the Base Position track in the genome browser.
    • Assemble exons to maintain the open reading frame (ORF) for a given gene.
    • Define the phases of the splice donor and acceptor sites and describe how they impact the maintenance of the ORF.
    • Identify the start and stop codons of an assembled ORF.
    Module 6
    • Demonstrate how alternative splicing of a gene can lead to different mRNAs.
    • Show how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.
  • Neutrophils in a Danio rerio Embryo. Student-generated picture of a wounded zebrafish embryo that was stained to show the neutrophils (small black dots) that had migrated toward the wound site on the fin.

    Inexpensive Cell Migration Inquiry Lab using Zebrafish

    Learning Objectives
    Students will:
    • formulate a hypothesis and design an experiment with the proper controls.
    • describe the steps involved in the zebrafish wounding assay (treating zebrafish embryos with drugs or control substances, wounding the embryo, staining the embryo, and counting neutrophils near the wound).
    • summarize results into a figure and write a descriptive figure legend.
    • perform appropriate statistical analysis.
    • interpret results in a discussion that draws connections between the cytoskeleton and cell migration.
    • put data into context by appropriately using information from journal articles in the introduction and discussion of a lab report.
  • Reprinted by permission from Macmillan Publishers Ltd.

    A Hands-on Introduction to Hidden Markov Models

    Learning Objectives
    • Students will be able to process unannotated genomic data using ab initio gene finders as well as other inputs.
    • Students will be able to defend the proposed gene annotation.
    • Students will reflect on the other uses for HMMs.
  • CRISPR/Cas9 in yeast experimental overview

    CRISPR/Cas9 in yeast: a multi-week laboratory exercise for undergraduate students

    Learning Objectives
    Week 1: CRISPR design
    • Locate the coding sequence, flanking sequence, protein product, and characteristics of a given gene from the Saccharomyces Genome Database (https://www.yeastgenome.org/).
    • Design and defend the design of guide RNA and single stranded template for DNA repair in CRISPR/Cas9 gene editing studies to generate Saccharomyces cerevisiae auxotrophic mutants.
    Week 3-4: Cloning
    • Describe the qualities of the vector, pML104, that allow replication and selection in bacteria and yeast as well as allow expression of necessary factors in CRISPR/Cas9 genome editing, including Cas9 and sgRNA.
    • Describe the rationale of and perform procedures necessary for cloning a small cassette (i.e., sgRNA gene) into a vector (i.e., pML104) including; restriction digest, annealing of DNA strands, removal of 5’ phosphates, ligation, and transformation.
    • Recognize and design appropriate controls for cloning procedures such as ligation and transformation.
    Week 5: Screening clones
    • Describe the method of polymerase chain reaction (PCR), including the rationale for essential components of a reaction mixture and thermal-cycling conditions.
    • Locate the binding sites of and design primers for PCR, then report the expected size of the amplification product.
    • Describe and perform isolation of plasmid DNA from E. coli.  
    Week 6: Selection of clones and transformation of yeast
    • Describe the rationale for and perform procedures to transform yeast, including the essential components of a transformation mixture and conditions necessary for transformation.
    • Describe the basic conditions required for cultivating yeast.
    • Describe the rationale for and perform agarose gel electrophoresis of a given size of DNA.
    • Analyze DNA separated by agarose gel electrophoresis, including size estimation.
    • Recognize and describe the qualities of a template for DNA repair that allows efficient DNA repair. 
    Week 7: Phenotyping
    • Design an experiment to determine auxotrophic phenotypes.
    • Predict the outcome of multi-step experiments.
    Multiweek
    • Recognize and describe conditions necessary for growth of E. coli and S. cerevisiae.
    • Qualitatively and quantitatively analyze scientific data from scientific experiments, including bacterial and yeast transformation, agarose gel electrophoresis, extraction of plasmid DNA from bacteria, PCR, and auxotroph phenotypic analysis.
    • Communicate science to peers through maintenance of a laboratory notebook, verbal communication with group members, and writing of a formal laboratory report written in a format acceptable for journal publication.
    • Troubleshoot scientific protocols by identifying procedures that are prone to error, comparing recommended protocols to actual procedure, and using positive and negative controls to narrow the location of a potential error.
    • Communicate specific potential or actual uses of CRISPR/Cas9 in science and/or medicine.
    Alignment with Society-Generated Learning Objectives - From Biochemistry and Molecular Biology, and Genetics Learning Frameworks
    • Use various bioinformatics approaches to analyze macromolecular primary sequence and structure.
    • Illustrate how DNA is replicated and genes are transmitted from one generation to the next in multiple types of organisms including bacteria, eukaryotes, viruses, and retroviruses.
    • Define what a genome consists of and how the information in various genes and other sequence classes within each genome are used to store and express genetic information.
    • Explain the meaning of ploidy (haploid, diploid, aneuploid etc.) and how it relates to the number of homologues of each chromosome. 
    • Predict the effects of mutations on the activity, structure, or stability of a protein and design appropriate experiments to assess the effects of mutations.
    • Predict the growth behavior of microbes based on their growth conditions, e.g., temperature, available nutrient, aeration level, etc.
    • Discuss the benefits of specific tools of modern biotechnology that are derived from naturally occurring microbes (e.g. cloning vectors, restriction enzymes, Taq polymerase, etc.)
    • Accurately prepare and use reagents and perform experiments.
    • When presented with an observation, develop a testable and falsifiable hypothesis.
    • When provided with a hypothesis, identify the appropriate experimental observations and controllable variables.
  • Figure 2. ICB-Students come to class prepared to discuss the text
  • Student-generated targeting construct from the construct ribbon parts

    Make It Stick: Teaching Gene Targeting with Ribbons and Fasteners

    Learning Objectives
    • Students will be able to design targeting constructs.
    • Students will be able to predict changes to the gene locus after homologous recombination.
    • Students will be able to design experiments to answer a biological question (e.g., "Design an experiment to test if the expression of gene X is necessary for limb development").
  • 3D Print Models: A collection of 3D models printed from online repository files.