Skip to main content

You are here

Filters

Search found 3 items

Search

  • Normal Arabidopsis plants (A) have flat, spatula shaped leaves. asymmetric leaves2 (as2) mutant plants (B) have leaves that are curled under and slightly twisted. asymmetric leaves1(as1) mutant plants (C) have leaves that are curled under and twisted but also have reduced petioles.  In the laboratory activities I present, students analyze the sequence of the as1 and as2 alleles and computationally model the wild-type and mutant proteins. Visualizing the 3-D structure of the proteins helps students understan

    Using computational molecular modeling software to demonstrate how DNA mutations cause phenotypes

    Learning Objectives
    Students successfully completing this lesson will:
    1. Practice basic molecular biology laboratory skills such as DNA isolation, PCR, and gel electrophoresis.
    2. Gather and analyze quantitative and qualitative scientific data and present it in figures.
    3. Use bioinformatics to analyze DNA sequences and obtain protein sequences for molecular modeling.
    4. Make and analyze three-dimensional (3-D) protein models using molecular modeling software.
    5. Write a laboratory report using the collected data to explain how mutations in the DNA cause changes in protein structure/function which lead to mutant phenotypes.
  • A photo of grizzly bears fishing in the McNeil Falls in Alaska, taken using BearCam by Lawrence Griffing.

    Authentic Ecological Inquiries Using BearCam Archives

    Learning Objectives
    Students will be able to:
    • conduct an authentic ecological inquiry including
      • generate a testable hypothesis based on observations,
      • design investigation with appropriate sampling selection and variables,
      • collect and analyze data following the design, and
      • interpret results and draw conclusions based on the evidence.
    • write a research report with appropriate structure and style.
    • evaluate the quality of inquiry reports using a rubric.
    • conduct peer review to evaluate and provide feedback to others' work.
    • revise the inquiry report based on peer feedback and self-assessment.
  • Neutrophils in a Danio rerio Embryo. Student-generated picture of a wounded zebrafish embryo that was stained to show the neutrophils (small black dots) that had migrated toward the wound site on the fin.

    Inexpensive Cell Migration Inquiry Lab using Zebrafish

    Learning Objectives
    Students will:
    • formulate a hypothesis and design an experiment with the proper controls.
    • describe the steps involved in the zebrafish wounding assay (treating zebrafish embryos with drugs or control substances, wounding the embryo, staining the embryo, and counting neutrophils near the wound).
    • summarize results into a figure and write a descriptive figure legend.
    • perform appropriate statistical analysis.
    • interpret results in a discussion that draws connections between the cytoskeleton and cell migration.
    • put data into context by appropriately using information from journal articles in the introduction and discussion of a lab report.