Skip to main content

You are here

Filters

Search

  • Structure of protein ABCB6

    Investigating the Function of a Transport Protein: Where is ABCB6 Located in Human Cells?

    Learning Objectives
    At the end of this activity students will be able to:
    • describe the use of two common research techniques for studying proteins: SDS-PAGE and immunoblot analysis.
    • determine a protein’s subcellular location based on results from: 1) immunoblotting after differential centrifugation, and 2) immunofluorescence microscopy.
    • analyze protein localization data based on the limitations of differential centrifugation and immunofluorescence microscopy.
  • Plant ecology students surveying vegetation at Red Hills, CA, spring 2012.  From left to right are G.L, F.D, A.M., and R.P.  Photo used with permission from all students.

    Out of Your Seat and on Your Feet! An adaptable course-based research project in plant ecology for advanced students

    Learning Objectives
    Students will:
    • Articulate testable hypotheses. (Lab 8, final presentation/paper, in-class exercises)
    • Analyze data to determine the level of support for articulated hypotheses. (Labs 4-7, final presentation/paper)
    • Identify multiple species of plants in the field quickly and accurately. (Labs 2-3, field trip)
    • Measure environmental variables and sample vegetation in the field. (Labs 2-3, field trip)
    • Analyze soil samples using a variety of low-tech lab techniques. (Open labs after field trip)
    • Use multiple statistical techniques to analyze data for patterns. (Labs 4-8, final presentation/paper)
    • Interpret statistical analyses to distinguish between strong and weak interactions in a biological system. (Labs 4-7, final presentation/paper)
    • Develop and present a conference-style presentation in a public forum. (Lab 8, final presentation/paper)
    • Write a publication-ready research paper communicating findings and displaying data. (Lab 8, final presentation/paper)
  • “The outcome of the Central Dogma is not always intuitive” Variation in gene size does not necessarily correlate with variation in protein size. Here, two related genes differ in length due to a deletion mutation that removes four nucleotides. Many students do not predict that the smaller gene, after transcription and translation, would produce a larger protein.

    Predicting and classifying effects of insertion and deletion mutations on protein coding regions

    Learning Objectives
    Students will be able to:
    • accurately predict effects of frameshift mutations in protein coding regions
    • conduct statistical analysis to compare expected and observed values
    • become familiar with accessing and using DNA sequence databases and analysis tools
  • Binding pocket diagram The image suggests that by providing appropriate non-covalent interactions at sites A, B and C, students can create a binding pocket selective for the neurotransmitter molecule serotonin.

    Serotonin in the Pocket: Non-covalent interactions and neurotransmitter binding

    Learning Objectives
    • Students will design a binding site for the neurotransmitter serotonin.
    • Students will be able to determine the effect of a change in molecular orientation on the affinity of the molecule for the binding site.
    • Students will be able to determine the effect of a change in molecular charge on the affinity of the molecule for the binding site.
    • Students will be able to better differentiate between hydrogen bond donors and acceptors.
    • Students can use this knowledge to design binding sites for other metabolites.
  • A A student assists Colorado Parks & Wildlife employees spawning greenback cutthroat trout at the Leadville National Fish Hatchery; B greenback cutthroat trout adults in a hatchery raceway; C tissue samples collected by students to be used for genetic analysis (images taken by S. Love Stowell)

    Cutthroat trout in Colorado: A case study connecting evolution and conservation

    Learning Objectives
    Students will be able to:
    • interpret figures such as maps, phylogenies, STRUCTURE plots, and networks for species delimitation
    • identify sources of uncertainty and disagreement in real data sets
    • propose research to address or remedy uncertainty
    • construct an evidence-based argument for the management of a rare taxon
  • The MAP Kinase signal transduction pathway

    Cell Signaling Pathways - a Case Study Approach

    Learning Objectives
    • Use knowledge of positive and negative regulation of signaling pathways to predict the outcome of genetic modifications or pharmaceutical manipulation.
    • From phenotypic data, predict whether a mutation is in a coding or a regulatory region of a gene involved in signaling.
    • Use data, combined with knowledge of pathways, to make reasonable predictions about the genetic basis of altered signaling pathways.
    • Interpret and use pathway diagrams.
    • Synthesize information by applying prior knowledge on gene expression when considering congenital syndromes.