Skip to main content

You are here

Filters

Search

  • Plant ecology students surveying vegetation at Red Hills, CA, spring 2012.  From left to right are G.L, F.D, A.M., and R.P.  Photo used with permission from all students.

    Out of Your Seat and on Your Feet! An adaptable course-based research project in plant ecology for advanced students

    Learning Objectives
    Students will:
    • Articulate testable hypotheses. (Lab 8, final presentation/paper, in-class exercises)
    • Analyze data to determine the level of support for articulated hypotheses. (Labs 4-7, final presentation/paper)
    • Identify multiple species of plants in the field quickly and accurately. (Labs 2-3, field trip)
    • Measure environmental variables and sample vegetation in the field. (Labs 2-3, field trip)
    • Analyze soil samples using a variety of low-tech lab techniques. (Open labs after field trip)
    • Use multiple statistical techniques to analyze data for patterns. (Labs 4-8, final presentation/paper)
    • Interpret statistical analyses to distinguish between strong and weak interactions in a biological system. (Labs 4-7, final presentation/paper)
    • Develop and present a conference-style presentation in a public forum. (Lab 8, final presentation/paper)
    • Write a publication-ready research paper communicating findings and displaying data. (Lab 8, final presentation/paper)
  • Cold-blooded animals and chemical kinetics

    Teaching the Biological Relevance of Chemical Kinetics Using Cold-Blooded Animal Biology

    Learning Objectives
    Students will be able to:
    • Predict the effect of reaction temperature on the rate of a chemical reaction
    • Interpret a graph plotted between rate of a chemical reaction and temperature
    • Discuss chemical kinetics utilizing case studies of cold-blooded animals
  • “The outcome of the Central Dogma is not always intuitive” Variation in gene size does not necessarily correlate with variation in protein size. Here, two related genes differ in length due to a deletion mutation that removes four nucleotides. Many students do not predict that the smaller gene, after transcription and translation, would produce a larger protein.

    Predicting and classifying effects of insertion and deletion mutations on protein coding regions

    Learning Objectives
    Students will be able to:
    • accurately predict effects of frameshift mutations in protein coding regions
    • conduct statistical analysis to compare expected and observed values
    • become familiar with accessing and using DNA sequence databases and analysis tools
  • The MAP Kinase signal transduction pathway

    Cell Signaling Pathways - a Case Study Approach

    Learning Objectives
    • Use knowledge of positive and negative regulation of signaling pathways to predict the outcome of genetic modifications or pharmaceutical manipulation.
    • From phenotypic data, predict whether a mutation is in a coding or a regulatory region of a gene involved in signaling.
    • Use data, combined with knowledge of pathways, to make reasonable predictions about the genetic basis of altered signaling pathways.
    • Interpret and use pathway diagrams.
    • Synthesize information by applying prior knowledge on gene expression when considering congenital syndromes.