Skip to main content

You are here

Filters

Search found 20 items

Search

  • Plant ecology students surveying vegetation at Red Hills, CA, spring 2012.  From left to right are G.L, F.D, A.M., and R.P.  Photo used with permission from all students.

    Out of Your Seat and on Your Feet! An adaptable course-based research project in plant ecology for advanced students

    Learning Objectives
    Students will:
    • Articulate testable hypotheses. (Lab 8, final presentation/paper, in-class exercises)
    • Analyze data to determine the level of support for articulated hypotheses. (Labs 4-7, final presentation/paper)
    • Identify multiple species of plants in the field quickly and accurately. (Labs 2-3, field trip)
    • Measure environmental variables and sample vegetation in the field. (Labs 2-3, field trip)
    • Analyze soil samples using a variety of low-tech lab techniques. (Open labs after field trip)
    • Use multiple statistical techniques to analyze data for patterns. (Labs 4-8, final presentation/paper)
    • Interpret statistical analyses to distinguish between strong and weak interactions in a biological system. (Labs 4-7, final presentation/paper)
    • Develop and present a conference-style presentation in a public forum. (Lab 8, final presentation/paper)
    • Write a publication-ready research paper communicating findings and displaying data. (Lab 8, final presentation/paper)
  • pClone Red Makes Research Look Easy

    Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Genetics (analyzing mutant...

    Learning Objectives
    • Describe how cells can produce proteins at the right time and correct amount. 
    • Diagram a bacterial promoter with −35 and −10 elements and the transcription start site.
    • Describe how mutational analysis can be used to study promoter sequence requirements.
    • Develop a promoter mutation hypothesis and design an experiment to test it.
    • Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments. 
    • Design an experiment to verify a mutated promoter has been cloned into a destination vector. 
    • Design an experiment to measure the strength of a promoter. 
    • Analyze data showing reporter protein produced and use the data to assess promoter strength. 
    • Define type IIs restriction enzymes.
    • Distinguish between type II and type IIs restriction enzymes.
    • Explain how Golden Gate Assembly (GGA) works.
    • Measure the relative strength of a promoter compared to a standard promoter.  
  • Strawberries

    The Case of the Missing Strawberries: RFLP analysis

    Learning Objectives
    Students will be able to:
    • Describe the relationship of cells, chromosomes, and DNA.
    • Isolate DNA from strawberries.
    • Digest DNA with restriction enzymes.
    • Perform gel electrophoresis.
    • Design an experiment to compare DNAs by RFLP analysis.
    • Predict results of RFLP analysis.
    • Interpret results of RFLP analysis.
    • Use appropriate safety procedures in the lab.
  • Possible implementations of a short research module

    A Short Laboratory Module to Help Infuse Metacognition during an Introductory Course-based Research Experience

    Learning Objectives
    • Students will be able to evaluate the strengths and weaknesses of data.
    • Students will be able to employ prior knowledge in formulating a biological research question or hypothesis.
    • Students will be able to distinguish a research question from a testable hypothesis.
    • Students will recognize that the following are essential elements in experimental design: identifying gaps in prior knowledge, picking an appropriate approach (ex. experimental tools and controls) for testing a hypothesis, and reproducibility and repeatability.
    • Students will be able to identify appropriate experimental tools, approaches and controls to use in testing a hypothesis.
    • Students will be able to accurately explain why an experimental approach they have selected is a good choice for testing a particular hypothesis.
    • Students will be able to discuss whether experimental outcomes support or fail to support a particular hypothesis, and in the case of the latter, discuss possible reasons why.
  • pClone Red Makes Research Look Easy

    Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Introductory Biology (identifying...

    Learning Objectives
    • Describe how cells can produce proteins at the right time and correct amount.
    • Diagram how a repressor works to reduce transcription.
    • Diagram how an activator works to increase transcription.
    • Identify a new promoter from literature and design a method to clone it and test its function.
    • Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments.
    • Design an experiment to verify a new promoter has been cloned into a destination vector.
    • Design an experiment to measure the strength of a promoter.
    • Analyze data showing reporter protein produced and use the data to assess promoter strength.
    • Define type IIs restriction enzymes.
    • Distinguish between type II and type IIs restriction enzymes.
    • Explain how Golden Gate Assembly (GGA) works.
    • Measure the relative strength of a promoter compared to a standard promoter.
  • Evaluating the Quick Fix: Weight Loss Drugs and Cellular Respiration Image File: QuickFixPrimImage.tiff Sources for images: Balance: Public Domain CCO http://www.pd4pic.com/scales-justice-scale-libra-balance-weighbridge.html Mitochondria: https://thumb7.shutterstock.com/thumb_large/1503584/235472731/stock-vector-mitochondrion-235472731.jpg Pills: https://pixabay.com/static/uploads/photo/2014/07/05/15/16/pills-384846_960_720.jpg

    Evaluating the Quick Fix: Weight Loss Drugs and Cellular Respiration

    Learning Objectives
    • Students will be able to explain how the energy from sugars is transformed into ATP via cellular respiration.
    • Students will be able to predict an outcome if there is a perturbation in the cellular respiration pathway.
    • Students will be able to state and evaluate a hypothesis.
    • Students will be able to interpret data from a graph, and use that data to make inferences about the action of a drug.
  • Using phylogenetics to make inferences about historical biogeographic patterns of evolution.

    Building Trees: Introducing evolutionary concepts by exploring Crassulaceae phylogeny and biogeography

    Learning Objectives
    Students will be able to:
    • Estimate phylogenetic trees using diverse data types and phylogenetic models.
    • Correctly make inferences about evolutionary history and relatedness from the tree diagrams obtained.
    • Use selected computer programs for phylogenetic analysis.
    • Use bootstrapping to assess the statistical support for a phylogeny.
    • Use phylogenetic data to construct, compare, and evaluate the role of geologic processes in shaping the historical and current geographic distributions of a group of organisms.
  • Mechanisms regulating the lac operon system

    Discovering Prokaryotic Gene Regulation by Building and Investigating a Computational Model of the lac Operon

    Learning Objectives
    Students will be able to:
    • model how the components of the lac operon contribute to gene regulation and expression.
    • generate and test predictions using computational modeling and simulations.
    • interpret and record graphs displaying simulation results.
    • relate simulation results to cellular events.
    • describe how changes in environmental glucose and lactose levels impact regulation of the lac operon.
    • predict, test, and explain how mutations in specific elements in the lac operon affect their protein product and other elements within the operon.
  • The mechanisms regulating the trp operon system.

    Discovering Prokaryotic Gene Regulation with Simulations of the trp Operon

    Learning Objectives
    Students will be able to:
    • Perturb and interpret simulations of the trp operon.
    • Define how simulation results relate to cellular events.
    • Describe the biological role of the trp operon.
    • Describe cellular mechanisms regulating the trp operon.
    • Explain mechanistically how changes in the extracellular environment affect the trp operon.
    • Define the impact of mutations on trp operon expression and regulation.
  • The MAP Kinase signal transduction pathway

    Cell Signaling Pathways - a Case Study Approach

    Learning Objectives
    • Use knowledge of positive and negative regulation of signaling pathways to predict the outcome of genetic modifications or pharmaceutical manipulation.
    • From phenotypic data, predict whether a mutation is in a coding or a regulatory region of a gene involved in signaling.
    • Use data, combined with knowledge of pathways, to make reasonable predictions about the genetic basis of altered signaling pathways.
    • Interpret and use pathway diagrams.
    • Synthesize information by applying prior knowledge on gene expression when considering congenital syndromes.
  • Figure 2. ICB-Students come to class prepared to discuss the text
  • American coot (Fulica Americana) family at the Cloisters City Park pond in Morrow Bay, CA. "Mike" Michael L. Baird [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons, https://upload.wikimedia.org/wikipedia/commons/d/db/Fulica_americana3.jpg

    Knowing your own: A classroom case study using the scientific method to investigate how birds learn to recognize their...

    Learning Objectives
    • Students will be able to identify and describe the steps of the scientific method.
    • Students will be able to develop hypotheses and predictions.
    • Students will be able to construct and interpret bar graphs based on data and predictions.
    • Students will be able to draw conclusions from data presented in graphical form.
  • Image from a clicker-based case study on muscular dystrophy and the effect of mutations on the processes in the central dogma.

    A clicker-based case study that untangles student thinking about the processes in the central dogma

    Learning Objectives
    Students will be able to:
    • explain the differences between silent (no change in the resulting amino acid sequence), missense (a change in the amino acid sequence), and nonsense (a change resulting in a premature stop codon) mutations.
    • differentiate between how information is encoded during DNA replication, transcription, and translation.
    • evaluate how different types of mutations (silent, missense, and nonsense) and the location of those mutations (intron, exon, and promoter) differentially affect the processes in the central dogma.
    • predict the molecular (DNA size, mRNA length, mRNA abundance, and protein length) and/or phenotypic consequences of mutations.
  • Example image of dividing cells obtained from the Allen Institute for Cell Science 3D Cell Viewer.

    A virtual laboratory on cell division using a publicly-available image database

    Learning Objectives
    • Students will name and describe the salient features and cellular tasks for each stage of cell division.
    • Students will predict the relative durations of the stages of cell division using prior knowledge and facts from assigned readings.
    • Students will describe the relationship between duration of each stage of cell division and the frequency of cells present in each stage of cell division counted in a random sample of images of pluripotent stem cells.
    • Students will identify the stages of cell division present in research-quality images of human pluripotent stem cells in various stages of cell division.
    • Students will quantify, analyze and summarize data on the prevalence of cells at different stages of cell division in randomly sampled cell populations.
    • Students will use data to reflect on and revise predictions.
  • A three-dimensional model of methionine is superimposed on a phase contrast micrograph of Saccharomyces cerevisiae from a log phase culture.

    Follow the Sulfur: Using Yeast Mutants to Study a Metabolic Pathway

    Learning Objectives
    At the end of this lesson, students will be able to:
    • use spot plating techniques to compare the growth of yeast strains on solid culture media.
    • predict the ability of specific met deletion strains to grow on media containing various sulfur sources.
    • predict how mutations in specific genes will affect the concentrations of metabolites in the pathways involved in methionine biosynthesis.
  • DNA barcoding research in first-year biology curriculum

    CURE-all: Large Scale Implementation of Authentic DNA Barcoding Research into First-Year Biology Curriculum

    Learning Objectives
    Students will be able to: Week 1-4: Fundamentals of Science and Biology
    • List the major processes involved in scientific discovery
    • List the different types of scientific studies and which types can establish causation
    • Design experiments with appropriate controls
    • Create and evaluate phylogenetic trees
    • Define taxonomy and phylogeny and explain their relationship to each other
    • Explain DNA sequence divergence and how it applies to evolutionary relationships and DNA barcoding
    Week 5-6: Ecology
    • Define and measure biodiversity and explain its importance
    • Catalog organisms using the morphospecies concept
    • Geographically map organisms using smartphones and an online mapping program
    • Calculate metrics of species diversity using spreadsheet software
    • Use spreadsheet software to quantify and graph biodiversity at forest edges vs. interiors
    • Write a formal lab report
    Week 7-11: Cellular and Molecular Biology
    • Extract, amplify, visualize and sequence DNA using standard molecular techniques (PCR, gel electrophoresis, Sanger sequencing)
    • Explain how DNA extraction, PCR, gel electrophoresis, and Sanger sequencing work at the molecular level
    Week 12-13: Bioinformatics
    • Trim and assemble raw DNA sequence data
    • Taxonomically identify DNA sequences isolated from unknown organisms using BLAST
    • Visualize sequence data relationships using sequence alignments and gene-based phylogenetic trees
    • Map and report data in a publicly available online database
    • Share data in a formal scientific poster
  • A tuco-tuco in South America (photo credit: Jeremy Hsu)

    Furry with a chance of evolution: Exploring genetic drift with tuco-tucos

    Learning Objectives
    • Students will be able to explain how genetic drift leads to allelic changes over generations.
    • Students will be able to demonstrate that sampling error can affect every generation, which can result in random changes in allelic frequency.
    • Students will be able to explore and evaluate the effect of population size on the strength of genetic drift.
    • Students will be able to analyze quantitative data associated with genetic drift.
  • Students engaged in building the PCR model

    A Close-Up Look at PCR

    Learning Objectives
    At the end of this lesson students will be able to...
    • Describe the role of a primer in PCR
    • Predict sequence and length of PCR product based on primer sequences
    • Recognize that primers are incorporated into the final PCR products and explain why
    • Identify covalent and hydrogen bonds formed and broken during PCR
    • Predict the structure of PCR products after each cycle of the reaction
    • Explain why amplification proceeds exponentially
  • How Silly Putty® is like bone

    What do Bone and Silly Putty® have in Common?: A Lesson on Bone Viscoelasticity

    Learning Objectives
    • Students will be able to explain how the anatomical structure of long bones relates to their function.
    • Students will be able to define viscoelasticity, hysteresis, anisotropy, stiffness, strength, ductility, and toughness.
    • Students will be able to identify the elastic and plastic regions of a stress-strain curve. They will be able to correlate each phase of the stress-strain curve with physical changes to bone.
    • Students will be able to predict how a bone would respond to changes in the magnitude of an applied force, and to variations in the speed or angle at which a force is applied.
    • Students will be able to determine the reason(s) why bone injuries occur more frequently during athletic events than during normal everyday use.