Skip to main content

You are here

Filters

Search found 5 items

Search

  • blind cave fish
  • Hydrozoan polyps on a hermit-crab shell (photo by Tiffany Galush)

    A new approach to course-based research using a hermit crab-hydrozoan symbiosis

    Learning Objectives
    Students will be able to:
    • define different types of symbiotic interactions, with specific examples.
    • summarize and critically evaluate contemporary primary literature relevant to ecological symbioses, in particular that between hermit crabs and Hydractinia spp.
    • articulate a question, based on observations of a natural phenomenon (in this example, the hermit crab-Hydractinia interaction).
    • articulate a testable hypothesis, based on their own observations and read of the literature.
    • design appropriate experimental or observational studies to address their hypotheses.
    • collect and interpret data in light of their hypotheses.
    • problem-solve and troubleshoot issues that arise during their experiment.
    • communicate scientific results, both orally and in written form.
  • Medical students at a fair. Credit: Danieladelrio

    Casting a Wide Net via Case Studies: Educating across the undergraduate to medical school continuum in the biological...

    Learning Objectives
    At the end of this lesson, the student should be able to:
    • Consider the potential advantages and disadvantages of widespread use of whole genome sequencing and direct-to-consumer genetic testing.
    • Explore the critical need to maintain privacy of individual genetic test results to protect patient interests.
    • Dissect the nuances of reporting whole genome sequencing results.
    • Recognize the economic ramifications of precision medicine strategies.
    • Formulate a deeper understanding of the ethical dimensions of emerging genetic testing technologies.
  • “Quantifying variation in biodiversity” Groundhogs (Marmota monax) with conspicuous variation awaiting measurements.

    Teaching Biodiversity with Museum Specimens in an Inquiry-Based Lab

    Learning Objectives
    Students completing this lab module will:
    • Learn how to appropriately handle and measure museum specimens.
    • Develop the necessary statistical skills to analyze museum specimen data.
    • Become familiar with how to search an online museum database and integrate supplemental data with their own dataset.
    • Strengthen scientific communication skills by presenting research to their peers.
    • Demonstrate ability to investigate scientific questions and address obstacles that occur during data collection and integration.
    • Increase proficiency in managing and using large datasets for scientific research.
    • Make connections between natural history knowledge and morphology of organisms in developing and testing hypotheses.
  • Enzymatic avocado browning is driven by polyphenol oxidase. Mashed avocado pulp is bright green but turns dark brown over the course of two hours at room temperature in the presence of air and salt. This reaction can be accelerated or inhibited by more than 20 different testable reagents, allowing students to explore experimental design.

    The Avocado Lab: An Inquiry-Driven Exploration of an Enzymatic Browning Reaction

    Learning Objectives
    Students will be able to:
    • develop a testable research question and supportive hypothesis regarding the browning of damaged avocado flesh caused by the activity of avocado polyphenol oxidase (aPPO).
    • design and execute a well-controlled experiment to test aPPO hypotheses.
    • evaluate qualitative enzyme activity data.
    • create a figure and legend to present qualitative data that tests multiple hypotheses and variables.
    • search for and correctly cite primary literature to support or refute hypotheses.
    • know the role of reducing reagents, pH, chelators, and temperature in reactions catalyzed by aPPO.
    • explain why the effects of salt and detergent differ for aPPO experiments conducted in situ
    • (in mashed avocado flesh) as compared to in vitro (on purified protein).
    • discuss how substrate and cofactor availability affect aPPO reactions.
    • describe how endogenous subcellular organization restricts aPPO reactions in a healthy avocado.
    • evaluate food handling practices for fruits expressing PPO.