Skip to main content

You are here

Filters

Search found 4 items

Search

  • Student-generated targeting construct from the construct ribbon parts

    Make It Stick: Teaching Gene Targeting with Ribbons and Fasteners

    Learning Objectives
    • Students will be able to design targeting constructs.
    • Students will be able to predict changes to the gene locus after homologous recombination.
    • Students will be able to design experiments to answer a biological question (e.g., "Design an experiment to test if the expression of gene X is necessary for limb development").
  • Sample Student Growth Curve. This image shows a yeast growth curve generated by a student in our lab, superimposed on an image of Saccharomyces cerevisiae cells.

    Using Yeast to Make Scientists: A Six-Week Student-Driven Research Project for the Cell Biology Laboratory

    Learning Objectives
    • Learn about basic S. cerevisiae biology
    • Use sterile technique
    • Perform a yeast viability assay
    • Use a spectrophotometer to measure growth of S. cerevisiae
    • Perform a literature search
    • Calculate concentrations of chemicals appropriate for S. cerevisiae
    • Generate S. cerevisiae growth curves
    • Troubleshoot experimental difficulties
    • Perform statistical analysis
    • Present findings to an audience
  • Structure of protein ABCB6

    Investigating the Function of a Transport Protein: Where is ABCB6 Located in Human Cells?

    Learning Objectives
    At the end of this activity students will be able to:
    • describe the use of two common research techniques for studying proteins: SDS-PAGE and immunoblot analysis.
    • determine a protein’s subcellular location based on results from: 1) immunoblotting after differential centrifugation, and 2) immunofluorescence microscopy.
    • analyze protein localization data based on the limitations of differential centrifugation and immunofluorescence microscopy.
  • Plant ecology students surveying vegetation at Red Hills, CA, spring 2012.  From left to right are G.L, F.D, A.M., and R.P.  Photo used with permission from all students.

    Out of Your Seat and on Your Feet! An adaptable course-based research project in plant ecology for advanced students

    Learning Objectives
    Students will:
    • Articulate testable hypotheses. (Lab 8, final presentation/paper, in-class exercises)
    • Analyze data to determine the level of support for articulated hypotheses. (Labs 4-7, final presentation/paper)
    • Identify multiple species of plants in the field quickly and accurately. (Labs 2-3, field trip)
    • Measure environmental variables and sample vegetation in the field. (Labs 2-3, field trip)
    • Analyze soil samples using a variety of low-tech lab techniques. (Open labs after field trip)
    • Use multiple statistical techniques to analyze data for patterns. (Labs 4-8, final presentation/paper)
    • Interpret statistical analyses to distinguish between strong and weak interactions in a biological system. (Labs 4-7, final presentation/paper)
    • Develop and present a conference-style presentation in a public forum. (Lab 8, final presentation/paper)
    • Write a publication-ready research paper communicating findings and displaying data. (Lab 8, final presentation/paper)