Skip to main content

You are here

Filters

Search found 8 items

Search

  • Students participating in the peer review process. Practicing the writing of scientific manuscripts prepares students to understand and engage in the primary literature they encounter.
  • A A student assists Colorado Parks & Wildlife employees spawning greenback cutthroat trout at the Leadville National Fish Hatchery; B greenback cutthroat trout adults in a hatchery raceway; C tissue samples collected by students to be used for genetic analysis (images taken by S. Love Stowell)

    Cutthroat trout in Colorado: A case study connecting evolution and conservation

    Learning Objectives
    Students will be able to:
    • interpret figures such as maps, phylogenies, STRUCTURE plots, and networks for species delimitation
    • identify sources of uncertainty and disagreement in real data sets
    • propose research to address or remedy uncertainty
    • construct an evidence-based argument for the management of a rare taxon
  • ACTN3 from https://upload.wikimedia.org/wikipedia/commons/3/33/Protein_ACTN3_PDB_1tjt.png

    The ACTN3 Polymorphism: Applications in Genetics and Physiology Teaching Laboratories

    Learning Objectives
    1. Test hypotheses related to the role of ACTN3 in skeletal muscle function.
    2. Explain how polymorphic variants of the ACTN3 gene affect protein structure and function.
    3. List and explain the differences between fast twitch and slow twitch muscle fibers.
    4. List and explain possible roles of the ACTN3 protein in skeletal muscle function.
    5. Find and analyze relevant scientific publications about the relationship between ACTN3 genotype and muscle function.
    6. Formulate hypotheses related to the relationship between ACTN3 genotype and skeletal muscle function.
    7. Design experiments to test hypotheses about the role of ACTN3 in skeletal muscle function.
    8. Statistically analyze experimental results using relevant software.
    9. Present experimental results in writing.
  • Simplified Representation of the Global Carbon Cycle, https://earthobservatory.nasa.gov/Features/CarbonCycle/images/carbon_cycle.jpg

    Promoting Climate Change Literacy for Non-majors: Implementation of an atmospheric carbon dioxide modeling activity as...

    Learning Objectives
    • Students will be able to manipulate and produce data and graphs.
    • Students will be able to design a simple mathematical model of atmospheric CO2 that can be used to make predictions.
    • Students will be able to conduct simulations, analyze, interpret, and draw conclusions about atmospheric CO2 levels from their own computer generated simulated data.
     
  • DNA

    Using CRISPR-Cas9 to teach the fundamentals of molecular biology and experimental design

    Learning Objectives
    Module 1
    • Generate a testable hypothesis that requires a creative design of reagents based on critical reading of and review of prior research.
    • Demonstrate proficiency in using molecular cloning software to analyze, manipulate and verify DNA sequences.
    • Predict the downstream effect on the mRNA and protein after successfully inserting a DNA repair template into the genome of a cell/organism.
    • Compare and contrast the processes of DNA duplication and PCR.
    • Demonstrate the ability to design primers to amplify a nucleotide sequence.
    • Analyze and evaluate the results of DNA agarose gel electrophoresis.
    Module 2
    • Identify the key features in genomic DNA, specifically those required for CRISPR-Cas9 mediated gene edits.
    • Explain how compatible ends of DNA are used to produce recombinant DNA in a ligation reaction.
    • Explain the chemical principles behind plasmid DNA purification from bacterial cultures.
    • Devise a strategy to screen clones based on antibiotic selection and the mechanism of digestion by DNA endonucleases.
    • Predict and evaluate the results of a diagnostic digest.
    Module 3
    • Explain the chemical principles behind DNA purification using phenol-chloroform extraction and ethanol precipitation.
    • Explain the key differences between DNA duplication and transcription.
    • Demonstrate the ability to perform lab work with sterile technique.
    • Compare and contrast the results of a non-denaturing vs. denaturing agarose gel.
    • Evaluate the results of a denaturing agarose gel.
    Module 4
    • Design and implement an experiment that tests the CRISPR-Cas9 principle.
    • Predict the outcome of a successful in vitro Cas9 digest.
    Presentation of Data Post Lesson
    • Summarize important background information on gene of interest from analysis of primary literature.
    • Produce figures and figure legends that clearly indicate results.
    • Organize and construct a poster that clearly and professionally displays the important aspects of the lesson.
    • Demonstrate understanding of the lesson by presenting a poster to an audience in lay terms, mid-level terms, or at an expert level.
    • Demonstrate understanding of procedures by writing a formal materials and methods paper.
  • Students at Century College use gel electrophoresis to analyze PCR samples in order to detect a group of ampicillin-resistance genes.

    Antibiotic Resistance Genes Detection in Environmental Samples

    Learning Objectives
    After completing this laboratory series, students will be able to:
    • apply the scientific method in formulating a hypothesis, designing a controlled experiment using appropriate molecular biology techniques, and analyzing experimental results;
    • conduct a molecular biology experiment and explain the principles behind methodologies, such as accurate use of micropipettes, PCR (polymerase chain reaction), and gel electrophoresis;
    • determine the presence of antibiotic-resistance genes in environmental samples by analyzing PCR products using gel electrophoresis;
    • explain mechanisms of microbial antibiotic resistance;
    • contribute data to the Antibiotic Resistance Genes Network;
    • define and apply key concepts of antibiotic resistance and gene identification via PCR fragment size.
  • ACTN3 from https://upload.wikimedia.org/wikipedia/commons/3/33/Protein_ACTN3_PDB_1tjt.png

    The Science Behind the ACTN3 Polymorphism

    Learning Objectives
    This article accompanies the lesson "The ACTN3 Polymorphism: Applications in Genetics and Physiology Teaching Laboratories." Learning objectives for the lesson include:
    1. Test hypotheses related to the role of ACTN3 in skeletal muscle function.
    2. Explain how polymorphic variants of the ACTN3 gene affect protein structure and function.
    3. List and explain the differences between fast twitch and slow twitch muscle fibers.
    4. List and explain possible roles of the ACTN3 protein in skeletal muscle function.
    5. Find and analyze relevant scientific publications about the relationship between ACTN3 genotype and muscle function.
    6. Formulate hypotheses related to the relationship between ACTN3 genotype and skeletal muscle function.
    7. Design experiments to test hypotheses about the role of ACTN3 in skeletal muscle function.
    8. Statistically analyze experimental results using relevant software.
    9. Present experimental results in writing.
  • Two cells stained

    Bad Cell Reception? Using a cell part activity to help students appreciate cell biology, with an improved data plan and...

    Learning Objectives
    • Identify cell parts and explain their function
    • Explain how defects in a cell part can result in human disease
    • Generate thought-provoking questions that expand upon existing knowledge
    • Create a hypothesis and plan an experiment to answer a cell part question
    • Find and reference relevant cell biology journal articles