Skip to main content

You are here

Filters

Search found 22 items

Search

  • Arabidopsis Seedling

    Linking Genotype to Phenotype: The Effect of a Mutation in Gibberellic Acid Production on Plant Germination

    Learning Objectives
    Students will be able to:
    • identify when germination occurs.
    • score germination in the presence and absence of GA to construct graphs of collated class data of wild-type and mutant specimens.
    • identify the genotype of an unknown sample based on the analysis of their graphical data.
    • organize data and perform quantitative data analysis.
    • explain the importance of GA for plant germination.
    • connect the inheritance of a mutation with the observed phenotype.
  • Hydrozoan polyps on a hermit-crab shell (photo by Tiffany Galush)

    A new approach to course-based research using a hermit crab-hydrozoan symbiosis

    Learning Objectives
    Students will be able to:
    • define different types of symbiotic interactions, with specific examples.
    • summarize and critically evaluate contemporary primary literature relevant to ecological symbioses, in particular that between hermit crabs and Hydractinia spp.
    • articulate a question, based on observations of a natural phenomenon (in this example, the hermit crab-Hydractinia interaction).
    • articulate a testable hypothesis, based on their own observations and read of the literature.
    • design appropriate experimental or observational studies to address their hypotheses.
    • collect and interpret data in light of their hypotheses.
    • problem-solve and troubleshoot issues that arise during their experiment.
    • communicate scientific results, both orally and in written form.
  • Students preforming the leaky neuron activity.

    The Leaky Neuron: Understanding synaptic integration using an analogy involving leaky cups

    Learning Objectives
    Students will able to:
    • compare and contrast spatial and temporal summation in terms of the number of presynaptic events and the timing of these events
    • predict the relative contribution to reaching threshold and firing an action potential as a function of distance from the axon hillock
    • predict how the frequency of incoming presynaptic action potentials effects the success of temporal summation of resultant postsynaptic potentials
  • Students participating in the peer review process. Practicing the writing of scientific manuscripts prepares students to understand and engage in the primary literature they encounter.
  • photo credit John Friedlein. Author (SRB) helps a student troubleshooting RStudio in the workshop session of class.
  • This collage contains original images taken by the course instructor. The images show a microscopic view of stomata on the underside of a Brassica rapa leaf (A), B. rapa plants in their growth trays (B), a flowering B. rapa plant (C), and different concentrations of foliar protein (D). Photos edited via Microsoft Windows Photo Editor and Phototastic Collage Maker.

    A flexible, multi-week approach to plant biology - How will plants respond to higher levels of CO2?

    Learning Objectives
    Students will be able to:
    • Apply findings from each week's lesson to make predictions and informed hypotheses about the next week's lesson.
    • Keep a detailed laboratory notebook.
    • Write and peer-edit the sections of a scientific paper, and collaboratively write an entire lab report in the form of a scientific research paper.
    • Search for, find, and read scientific research papers.
    • Work together as a team to conduct experiments.
    • Connect findings and ideas from each week's lesson to get a broader understanding of how plants will respond to higher levels of CO2 (e.g., stomatal density, photosynthetic/respiratory rates, foliar protein concentrations, growth, and resource allocation).
    Note: Additional, more specific objectives are included with each of the four lessons (Supporting Files S1-S4)
  • Pipets - photo by Magnus Manske

    Learning to Pipet Correctly by Pipetting Incorrectly?

    Learning Objectives
    • Students will be able to use analytical balances and micropipettes.
    • Students will be able to calculate averages and standard deviations.
    • Students will be able to use t-tests to compare two independent samples.
    • Students will be able to justify accepting or rejecting a null hypothesis based on an interpretation of p-values.
    • Students will learn to use spreadsheet software such as Microsoft Excel and/or Google Sheets
    • Students will be able to explain how pipetting incorrectly leads to errors.
  • A photo of grizzly bears fishing in the McNeil Falls in Alaska, taken using BearCam by Lawrence Griffing.

    Authentic Ecological Inquiries Using BearCam Archives

    Learning Objectives
    Students will be able to:
    • conduct an authentic ecological inquiry including
      • generate a testable hypothesis based on observations,
      • design investigation with appropriate sampling selection and variables,
      • collect and analyze data following the design, and
      • interpret results and draw conclusions based on the evidence.
    • write a research report with appropriate structure and style.
    • evaluate the quality of inquiry reports using a rubric.
    • conduct peer review to evaluate and provide feedback to others' work.
    • revise the inquiry report based on peer feedback and self-assessment.
  • MA plot of RNA-seq data. An MA plot is a visual summary of gene expression data which identifies genes showing differential expression between two treatments.

    Tackling "Big Data" with Biology Undergrads: A Simple RNA-seq Data Analysis Tutorial Using Galaxy

    Learning Objectives
    • Students will locate and download high-throughput sequence data and genome annotation files from publically available data repositories.
    • Students will use Galaxy to create an automated computational workflow that performs sequence quality assessment, trimming, and mapping of RNA-seq data.
    • Students will analyze and interpret the outputs of RNA-seq analysis programs.
    • Students will identify a group of genes that is differentially expressed between treatment and control samples, and interpret the biological significance of this list of differentially expressed genes.
  • Abelson kinase signaling network. The image shows many connections between genes and illustrates that signaling molecules and pathways function within networks. It emphasizes the indispensability of computational tools in understanding the molecular functioning of cells. The image was generated with Cytoscape from publicly accessible protein-protein interactions databases.

    Investigating Cell Signaling with Gene Expression Datasets

    Learning Objectives
    Students will be able to:
    • Explain the hierarchical organization of signal transduction pathways.
    • Explain the role of enzymes in signal propagation and amplification.
    • Recognize the centrality of signaling pathways in cellular processes, such as metabolism, cell division, or cell motility.
    • Rationalize the etiologic basis of disease in terms of deranged signaling pathways.
    • Use software to analyze and interpret gene expression data.
    • Use an appropriate statistical method for hypotheses testing.
    • Produce reports that are written in scientific style.
  • “Phenology of a Dawn Redwood” – Images collected by students for this lesson pieced together illustrating a Metasequoia glyptostroboides changing color and dropping its leaves in the fall of 2017 on Michigan State University campus.

    Quantifying and Visualizing Campus Tree Phenology

    Learning Objectives
    The Learning Objectives of this lesson span across the entire semester.
    • Observe and collect information on phenological changes in local trees.
    • Become familiar with a database and how to work with large datasets.
    • Analyze and visualize data from the database to test their hypotheses and questions.
    • Develop a research proposal including empirically-driven questions and hypotheses.
    • Synthesize the results of their analysis in the context of plant biodiversity and local environmental conditions.
  • Students engaged in building the PCR model

    A Close-Up Look at PCR

    Learning Objectives
    At the end of this lesson students will be able to...
    • Describe the role of a primer in PCR
    • Predict sequence and length of PCR product based on primer sequences
    • Recognize that primers are incorporated into the final PCR products and explain why
    • Identify covalent and hydrogen bonds formed and broken during PCR
    • Predict the structure of PCR products after each cycle of the reaction
    • Explain why amplification proceeds exponentially
  • American coot (Fulica Americana) family at the Cloisters City Park pond in Morrow Bay, CA. "Mike" Michael L. Baird [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons, https://upload.wikimedia.org/wikipedia/commons/d/db/Fulica_americana3.jpg

    Knowing your own: A classroom case study using the scientific method to investigate how birds learn to recognize their...

    Learning Objectives
    • Students will be able to identify and describe the steps of the scientific method.
    • Students will be able to develop hypotheses and predictions.
    • Students will be able to construct and interpret bar graphs based on data and predictions.
    • Students will be able to draw conclusions from data presented in graphical form.
  • CRISPR/Cas9 in yeast experimental overview

    CRISPR/Cas9 in yeast: a multi-week laboratory exercise for undergraduate students

    Learning Objectives
    Week 1: CRISPR design
    • Locate the coding sequence, flanking sequence, protein product, and characteristics of a given gene from the Saccharomyces Genome Database (https://www.yeastgenome.org/).
    • Design and defend the design of guide RNA and single stranded template for DNA repair in CRISPR/Cas9 gene editing studies to generate Saccharomyces cerevisiae auxotrophic mutants.
    Week 3-4: Cloning
    • Describe the qualities of the vector, pML104, that allow replication and selection in bacteria and yeast as well as allow expression of necessary factors in CRISPR/Cas9 genome editing, including Cas9 and sgRNA.
    • Describe the rationale of and perform procedures necessary for cloning a small cassette (i.e., sgRNA gene) into a vector (i.e., pML104) including; restriction digest, annealing of DNA strands, removal of 5’ phosphates, ligation, and transformation.
    • Recognize and design appropriate controls for cloning procedures such as ligation and transformation.
    Week 5: Screening clones
    • Describe the method of polymerase chain reaction (PCR), including the rationale for essential components of a reaction mixture and thermal-cycling conditions.
    • Locate the binding sites of and design primers for PCR, then report the expected size of the amplification product.
    • Describe and perform isolation of plasmid DNA from E. coli.  
    Week 6: Selection of clones and transformation of yeast
    • Describe the rationale for and perform procedures to transform yeast, including the essential components of a transformation mixture and conditions necessary for transformation.
    • Describe the basic conditions required for cultivating yeast.
    • Describe the rationale for and perform agarose gel electrophoresis of a given size of DNA.
    • Analyze DNA separated by agarose gel electrophoresis, including size estimation.
    • Recognize and describe the qualities of a template for DNA repair that allows efficient DNA repair. 
    Week 7: Phenotyping
    • Design an experiment to determine auxotrophic phenotypes.
    • Predict the outcome of multi-step experiments.
    Multiweek
    • Recognize and describe conditions necessary for growth of E. coli and S. cerevisiae.
    • Qualitatively and quantitatively analyze scientific data from scientific experiments, including bacterial and yeast transformation, agarose gel electrophoresis, extraction of plasmid DNA from bacteria, PCR, and auxotroph phenotypic analysis.
    • Communicate science to peers through maintenance of a laboratory notebook, verbal communication with group members, and writing of a formal laboratory report written in a format acceptable for journal publication.
    • Troubleshoot scientific protocols by identifying procedures that are prone to error, comparing recommended protocols to actual procedure, and using positive and negative controls to narrow the location of a potential error.
    • Communicate specific potential or actual uses of CRISPR/Cas9 in science and/or medicine.
    Alignment with Society-Generated Learning Objectives - From Biochemistry and Molecular Biology, and Genetics Learning Frameworks
    • Use various bioinformatics approaches to analyze macromolecular primary sequence and structure.
    • Illustrate how DNA is replicated and genes are transmitted from one generation to the next in multiple types of organisms including bacteria, eukaryotes, viruses, and retroviruses.
    • Define what a genome consists of and how the information in various genes and other sequence classes within each genome are used to store and express genetic information.
    • Explain the meaning of ploidy (haploid, diploid, aneuploid etc.) and how it relates to the number of homologues of each chromosome. 
    • Predict the effects of mutations on the activity, structure, or stability of a protein and design appropriate experiments to assess the effects of mutations.
    • Predict the growth behavior of microbes based on their growth conditions, e.g., temperature, available nutrient, aeration level, etc.
    • Discuss the benefits of specific tools of modern biotechnology that are derived from naturally occurring microbes (e.g. cloning vectors, restriction enzymes, Taq polymerase, etc.)
    • Accurately prepare and use reagents and perform experiments.
    • When presented with an observation, develop a testable and falsifiable hypothesis.
    • When provided with a hypothesis, identify the appropriate experimental observations and controllable variables.
  • Example image of dividing cells obtained from the Allen Institute for Cell Science 3D Cell Viewer.

    A virtual laboratory on cell division using a publicly-available image database

    Learning Objectives
    • Students will name and describe the salient features and cellular tasks for each stage of cell division.
    • Students will predict the relative durations of the stages of cell division using prior knowledge and facts from assigned readings.
    • Students will describe the relationship between duration of each stage of cell division and the frequency of cells present in each stage of cell division counted in a random sample of images of pluripotent stem cells.
    • Students will identify the stages of cell division present in research-quality images of human pluripotent stem cells in various stages of cell division.
    • Students will quantify, analyze and summarize data on the prevalence of cells at different stages of cell division in randomly sampled cell populations.
    • Students will use data to reflect on and revise predictions.
  • Using phylogenetics to make inferences about historical biogeographic patterns of evolution.

    Building Trees: Introducing evolutionary concepts by exploring Crassulaceae phylogeny and biogeography

    Learning Objectives
    Students will be able to:
    • Estimate phylogenetic trees using diverse data types and phylogenetic models.
    • Correctly make inferences about evolutionary history and relatedness from the tree diagrams obtained.
    • Use selected computer programs for phylogenetic analysis.
    • Use bootstrapping to assess the statistical support for a phylogeny.
    • Use phylogenetic data to construct, compare, and evaluate the role of geologic processes in shaping the historical and current geographic distributions of a group of organisms.
  • Simplified Representation of the Global Carbon Cycle, https://earthobservatory.nasa.gov/Features/CarbonCycle/images/carbon_cycle.jpg

    Promoting Climate Change Literacy for Non-majors: Implementation of an atmospheric carbon dioxide modeling activity as...

    Learning Objectives
    • Students will be able to manipulate and produce data and graphs.
    • Students will be able to design a simple mathematical model of atmospheric CO2 that can be used to make predictions.
    • Students will be able to conduct simulations, analyze, interpret, and draw conclusions about atmospheric CO2 levels from their own computer generated simulated data.
     
  • Evaluating the Quick Fix: Weight Loss Drugs and Cellular Respiration Image File: QuickFixPrimImage.tiff Sources for images: Balance: Public Domain CCO http://www.pd4pic.com/scales-justice-scale-libra-balance-weighbridge.html Mitochondria: https://thumb7.shutterstock.com/thumb_large/1503584/235472731/stock-vector-mitochondrion-235472731.jpg Pills: https://pixabay.com/static/uploads/photo/2014/07/05/15/16/pills-384846_960_720.jpg

    Evaluating the Quick Fix: Weight Loss Drugs and Cellular Respiration

    Learning Objectives
    • Students will be able to explain how the energy from sugars is transformed into ATP via cellular respiration.
    • Students will be able to predict an outcome if there is a perturbation in the cellular respiration pathway.
    • Students will be able to state and evaluate a hypothesis.
    • Students will be able to interpret data from a graph, and use that data to make inferences about the action of a drug.
  • Adult female Daphnia dentifera. Daphnia spp. make a great study system due to their transparent body and their ease of upkeep in a lab.

    Dynamic Daphnia: An inquiry-based research experience in ecology that teaches the scientific process to first-year...

    Learning Objectives
    Students will be able to:
    • Construct written predictions about 1 factor experiments.
    • Interpret simple (2 variables) figures.
    • Construct simple (2 variables) figures from data.
    • Design simple 1 factor experiments with appropriate controls.
    • Demonstrate proper use of standard laboratory items, including a two-stop pipette, stereomicroscope, and laboratory notebook.
    • Calculate means and standard deviations.
    • Given some scaffolding (instructions), select the correct statistical test for a data set, be able to run a t-test, ANOVA, chi-squared test, and linear regression in Microsoft Excel, and be able to correctly interpret their results.
    • Construct and present a scientific poster.
  • Using Place-Based Economically Relevant Organisms to Improve Student Understanding of the Roles of Carbon Dioxide,...

    Learning Objectives
    At the end of this lesson, students will be able to:
    • Describe the roles of light energy and carbon dioxide in photosynthetic organisms.
    • Identify the effect of nutrients on the growth of photosynthetic organisms.
    • Describe global cycles in atmospheric carbon dioxide levels and how they relate to photosynthetic organisms.
  • DNA barcoding research in first-year biology curriculum

    CURE-all: Large Scale Implementation of Authentic DNA Barcoding Research into First-Year Biology Curriculum

    Learning Objectives
    Students will be able to: Week 1-4: Fundamentals of Science and Biology
    • List the major processes involved in scientific discovery
    • List the different types of scientific studies and which types can establish causation
    • Design experiments with appropriate controls
    • Create and evaluate phylogenetic trees
    • Define taxonomy and phylogeny and explain their relationship to each other
    • Explain DNA sequence divergence and how it applies to evolutionary relationships and DNA barcoding
    Week 5-6: Ecology
    • Define and measure biodiversity and explain its importance
    • Catalog organisms using the morphospecies concept
    • Geographically map organisms using smartphones and an online mapping program
    • Calculate metrics of species diversity using spreadsheet software
    • Use spreadsheet software to quantify and graph biodiversity at forest edges vs. interiors
    • Write a formal lab report
    Week 7-11: Cellular and Molecular Biology
    • Extract, amplify, visualize and sequence DNA using standard molecular techniques (PCR, gel electrophoresis, Sanger sequencing)
    • Explain how DNA extraction, PCR, gel electrophoresis, and Sanger sequencing work at the molecular level
    Week 12-13: Bioinformatics
    • Trim and assemble raw DNA sequence data
    • Taxonomically identify DNA sequences isolated from unknown organisms using BLAST
    • Visualize sequence data relationships using sequence alignments and gene-based phylogenetic trees
    • Map and report data in a publicly available online database
    • Share data in a formal scientific poster
  • pClone Red Makes Research Look Easy

    Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Genetics (analyzing mutant...

    Learning Objectives
    • Describe how cells can produce proteins at the right time and correct amount. 
    • Diagram a bacterial promoter with −35 and −10 elements and the transcription start site.
    • Describe how mutational analysis can be used to study promoter sequence requirements.
    • Develop a promoter mutation hypothesis and design an experiment to test it.
    • Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments. 
    • Design an experiment to verify a mutated promoter has been cloned into a destination vector. 
    • Design an experiment to measure the strength of a promoter. 
    • Analyze data showing reporter protein produced and use the data to assess promoter strength. 
    • Define type IIs restriction enzymes.
    • Distinguish between type II and type IIs restriction enzymes.
    • Explain how Golden Gate Assembly (GGA) works.
    • Measure the relative strength of a promoter compared to a standard promoter.