Skip to main content

You are here

Filters

Search found 24 items

Search

  • 3D Print Model of the Mars Curiosity Rover, printed from NASA 3D Resources (https://nasa3d.arc.nasa.gov/detail/mars-rover-curiosity)

    Exploring the March to Mars Using 3D Print Models

    Learning Objectives
    • Students will be able to describe the major aspects of the Mars Curiosity Rover missions.
    • Students will be able to synthesize information learned from a classroom jigsaw activity on the Mars Curiosity Rover missions.
    • Students will be able to work in teams to plan a future manned mission to Mars.
    • Students will be able to summarize their reports to the class.
  • Your Tax Dollars at Work: A mock grant writing experience centered on scientific process skills

    Learning Objectives
    Students will be able to:
    • Propose a testable, novel question contributing to a biological field of study.
    • Formulate a study rationale.
    • Describe relevant background information on a topic using the primary literature.
    • Choose appropriate scientific, mathematical, and statistical methods to analyze a research question.
    • Determine the financial costs of a research project.
    • Present a proposal for peer review and compose a constructive peer review.
    • Collaborate as a member of a scientific team.
    • Articulate the review criteria and process used in NSF-style proposal review.
  • Image from http://www.epa.gov/airdata/ad_maps.html

    Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues

    Learning Objectives
    Students will be able to:
    • Describe various parameters of air quality that can negatively impact human health, list priority air pollutants, and interpret the EPA Air Quality Index as it relates to human health.
    • Identify an air quality problem that varies on spatial and/or temporal scales that can be addressed using publicly available U.S. EPA air data.
    • Collect appropriate U.S. EPA Airdata information needed to answer that/those questions, using the U.S. EPA Airdata website data mining tools.
    • Analyze the data as needed to address or answer their question(s).
    • Interpret data and draw conclusions regarding air quality levels and/or impacts on human and public health.
    • Communicate results in the form of a scientific paper.
  • Plant ecology students surveying vegetation at Red Hills, CA, spring 2012.  From left to right are G.L, F.D, A.M., and R.P.  Photo used with permission from all students.

    Out of Your Seat and on Your Feet! An adaptable course-based research project in plant ecology for advanced students

    Learning Objectives
    Students will:
    • Articulate testable hypotheses. (Lab 8, final presentation/paper, in-class exercises)
    • Analyze data to determine the level of support for articulated hypotheses. (Labs 4-7, final presentation/paper)
    • Identify multiple species of plants in the field quickly and accurately. (Labs 2-3, field trip)
    • Measure environmental variables and sample vegetation in the field. (Labs 2-3, field trip)
    • Analyze soil samples using a variety of low-tech lab techniques. (Open labs after field trip)
    • Use multiple statistical techniques to analyze data for patterns. (Labs 4-8, final presentation/paper)
    • Interpret statistical analyses to distinguish between strong and weak interactions in a biological system. (Labs 4-7, final presentation/paper)
    • Develop and present a conference-style presentation in a public forum. (Lab 8, final presentation/paper)
    • Write a publication-ready research paper communicating findings and displaying data. (Lab 8, final presentation/paper)
  • ACTN3 from https://upload.wikimedia.org/wikipedia/commons/3/33/Protein_ACTN3_PDB_1tjt.png

    The ACTN3 Polymorphism: Applications in Genetics and Physiology Teaching Laboratories

    Learning Objectives
    1. Test hypotheses related to the role of ACTN3 in skeletal muscle function.
    2. Explain how polymorphic variants of the ACTN3 gene affect protein structure and function.
    3. List and explain the differences between fast twitch and slow twitch muscle fibers.
    4. List and explain possible roles of the ACTN3 protein in skeletal muscle function.
    5. Find and analyze relevant scientific publications about the relationship between ACTN3 genotype and muscle function.
    6. Formulate hypotheses related to the relationship between ACTN3 genotype and skeletal muscle function.
    7. Design experiments to test hypotheses about the role of ACTN3 in skeletal muscle function.
    8. Statistically analyze experimental results using relevant software.
    9. Present experimental results in writing.
  • Building a Model of Tumorigenesis: A small group activity for a cancer biology/cell biology course

    Learning Objectives
    At the end of the activity, students will be able to:
    • Analyze data from a retrospective clinical study uncovering genetic alterations in colorectal cancer.
    • Draw conclusions about human tumorigenesis using data from a retrospective clinical study.
    • Present scientific data in an appropriate and accurate way.
    • Discuss why modeling is an important practice of science.
    • Create a simple model of the genetic changes associated with a particular human cancer.
  • Students preforming the leaky neuron activity.

    The Leaky Neuron: Understanding synaptic integration using an analogy involving leaky cups

    Learning Objectives
    Students will able to:
    • compare and contrast spatial and temporal summation in terms of the number of presynaptic events and the timing of these events
    • predict the relative contribution to reaching threshold and firing an action potential as a function of distance from the axon hillock
    • predict how the frequency of incoming presynaptic action potentials effects the success of temporal summation of resultant postsynaptic potentials
  • pClone Red Makes Research Look Easy

    Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Introductory Biology (identifying...

    Learning Objectives
    • Describe how cells can produce proteins at the right time and correct amount.
    • Diagram how a repressor works to reduce transcription.
    • Diagram how an activator works to increase transcription.
    • Identify a new promoter from literature and design a method to clone it and test its function.
    • Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments.
    • Design an experiment to verify a new promoter has been cloned into a destination vector.
    • Design an experiment to measure the strength of a promoter.
    • Analyze data showing reporter protein produced and use the data to assess promoter strength.
    • Define type IIs restriction enzymes.
    • Distinguish between type II and type IIs restriction enzymes.
    • Explain how Golden Gate Assembly (GGA) works.
    • Measure the relative strength of a promoter compared to a standard promoter.
  • Students at Century College use gel electrophoresis to analyze PCR samples in order to detect a group of ampicillin-resistance genes.

    Antibiotic Resistance Genes Detection in Environmental Samples

    Learning Objectives
    After completing this laboratory series, students will be able to:
    • apply the scientific method in formulating a hypothesis, designing a controlled experiment using appropriate molecular biology techniques, and analyzing experimental results;
    • conduct a molecular biology experiment and explain the principles behind methodologies, such as accurate use of micropipettes, PCR (polymerase chain reaction), and gel electrophoresis;
    • determine the presence of antibiotic-resistance genes in environmental samples by analyzing PCR products using gel electrophoresis;
    • explain mechanisms of microbial antibiotic resistance;
    • contribute data to the Antibiotic Resistance Genes Network;
    • define and apply key concepts of antibiotic resistance and gene identification via PCR fragment size.
  • A three-dimensional model of methionine is superimposed on a phase contrast micrograph of Saccharomyces cerevisiae from a log phase culture.

    Follow the Sulfur: Using Yeast Mutants to Study a Metabolic Pathway

    Learning Objectives
    At the end of this lesson, students will be able to:
    • use spot plating techniques to compare the growth of yeast strains on solid culture media.
    • predict the ability of specific met deletion strains to grow on media containing various sulfur sources.
    • predict how mutations in specific genes will affect the concentrations of metabolites in the pathways involved in methionine biosynthesis.
  • Medical students at a fair. Credit: Danieladelrio

    Casting a Wide Net via Case Studies: Educating across the undergraduate to medical school continuum in the biological...

    Learning Objectives
    At the end of this lesson, the student should be able to:
    • Consider the potential advantages and disadvantages of widespread use of whole genome sequencing and direct-to-consumer genetic testing.
    • Explore the critical need to maintain privacy of individual genetic test results to protect patient interests.
    • Dissect the nuances of reporting whole genome sequencing results.
    • Recognize the economic ramifications of precision medicine strategies.
    • Formulate a deeper understanding of the ethical dimensions of emerging genetic testing technologies.
  • Memory Helper is an illustration of a made up dietary supplement. Because the supplement is named Memory Helper, and because a picture of a brain is placed on the label, consumers might believe that the supplement is a memory aid. We add the footnote “tested?” to suggest that consumers should take a closer look.

    Bad Science: Exploring the unethical research behind a putative memory supplement

    Learning Objectives
    Students will be able to:
    • create criteria for evaluating information that is touted as scientific.
    • apply those criteria to evaluate the claim that Prevagen® enhances memory.
    • identify the misleading tactics used on the Prevagen® website and in their self-published reporting.
    • decide whether to recommend taking Prevagen® and explain their decisions.
  • Abelson kinase signaling network. The image shows many connections between genes and illustrates that signaling molecules and pathways function within networks. It emphasizes the indispensability of computational tools in understanding the molecular functioning of cells. The image was generated with Cytoscape from publicly accessible protein-protein interactions databases.

    Investigating Cell Signaling with Gene Expression Datasets

    Learning Objectives
    Students will be able to:
    • Explain the hierarchical organization of signal transduction pathways.
    • Explain the role of enzymes in signal propagation and amplification.
    • Recognize the centrality of signaling pathways in cellular processes, such as metabolism, cell division, or cell motility.
    • Rationalize the etiologic basis of disease in terms of deranged signaling pathways.
    • Use software to analyze and interpret gene expression data.
    • Use an appropriate statistical method for hypotheses testing.
    • Produce reports that are written in scientific style.
  • Structure of protein ABCB6

    Investigating the Function of a Transport Protein: Where is ABCB6 Located in Human Cells?

    Learning Objectives
    At the end of this activity students will be able to:
    • describe the use of two common research techniques for studying proteins: SDS-PAGE and immunoblot analysis.
    • determine a protein’s subcellular location based on results from: 1) immunoblotting after differential centrifugation, and 2) immunofluorescence microscopy.
    • analyze protein localization data based on the limitations of differential centrifugation and immunofluorescence microscopy.
  • Adult female Daphnia dentifera. Daphnia spp. make a great study system due to their transparent body and their ease of upkeep in a lab.

    Dynamic Daphnia: An inquiry-based research experience in ecology that teaches the scientific process to first-year...

    Learning Objectives
    Students will be able to:
    • Construct written predictions about 1 factor experiments.
    • Interpret simple (2 variables) figures.
    • Construct simple (2 variables) figures from data.
    • Design simple 1 factor experiments with appropriate controls.
    • Demonstrate proper use of standard laboratory items, including a two-stop pipette, stereomicroscope, and laboratory notebook.
    • Calculate means and standard deviations.
    • Given some scaffolding (instructions), select the correct statistical test for a data set, be able to run a t-test, ANOVA, chi-squared test, and linear regression in Microsoft Excel, and be able to correctly interpret their results.
    • Construct and present a scientific poster.
  • Sample Student Growth Curve. This image shows a yeast growth curve generated by a student in our lab, superimposed on an image of Saccharomyces cerevisiae cells.

    Using Yeast to Make Scientists: A Six-Week Student-Driven Research Project for the Cell Biology Laboratory

    Learning Objectives
    • Learn about basic S. cerevisiae biology
    • Use sterile technique
    • Perform a yeast viability assay
    • Use a spectrophotometer to measure growth of S. cerevisiae
    • Perform a literature search
    • Calculate concentrations of chemicals appropriate for S. cerevisiae
    • Generate S. cerevisiae growth curves
    • Troubleshoot experimental difficulties
    • Perform statistical analysis
    • Present findings to an audience
  • Using QIIME to Interpret Environmental Microbial Communities in an Upper Level Metagenomics Course

    Learning Objectives
    Students will be able to:
    • list and perform the steps of sequence processing and taxonomic inference.
    • interpret microbial community diversity from metagenomic sequence datasets.
    • compare microbial diversity within and between samples or treatments.
  • Hydrozoan polyps on a hermit-crab shell (photo by Tiffany Galush)

    A new approach to course-based research using a hermit crab-hydrozoan symbiosis

    Learning Objectives
    Students will be able to:
    • define different types of symbiotic interactions, with specific examples.
    • summarize and critically evaluate contemporary primary literature relevant to ecological symbioses, in particular that between hermit crabs and Hydractinia spp.
    • articulate a question, based on observations of a natural phenomenon (in this example, the hermit crab-Hydractinia interaction).
    • articulate a testable hypothesis, based on their own observations and read of the literature.
    • design appropriate experimental or observational studies to address their hypotheses.
    • collect and interpret data in light of their hypotheses.
    • problem-solve and troubleshoot issues that arise during their experiment.
    • communicate scientific results, both orally and in written form.
  • The MAP Kinase signal transduction pathway

    Cell Signaling Pathways - a Case Study Approach

    Learning Objectives
    • Use knowledge of positive and negative regulation of signaling pathways to predict the outcome of genetic modifications or pharmaceutical manipulation.
    • From phenotypic data, predict whether a mutation is in a coding or a regulatory region of a gene involved in signaling.
    • Use data, combined with knowledge of pathways, to make reasonable predictions about the genetic basis of altered signaling pathways.
    • Interpret and use pathway diagrams.
    • Synthesize information by applying prior knowledge on gene expression when considering congenital syndromes.
  • This collage contains original images taken by the course instructor. The images show a microscopic view of stomata on the underside of a Brassica rapa leaf (A), B. rapa plants in their growth trays (B), a flowering B. rapa plant (C), and different concentrations of foliar protein (D). Photos edited via Microsoft Windows Photo Editor and Phototastic Collage Maker.

    A flexible, multi-week approach to plant biology - How will plants respond to higher levels of CO2?

    Learning Objectives
    Students will be able to:
    • Apply findings from each week's lesson to make predictions and informed hypotheses about the next week's lesson.
    • Keep a detailed laboratory notebook.
    • Write and peer-edit the sections of a scientific paper, and collaboratively write an entire lab report in the form of a scientific research paper.
    • Search for, find, and read scientific research papers.
    • Work together as a team to conduct experiments.
    • Connect findings and ideas from each week's lesson to get a broader understanding of how plants will respond to higher levels of CO2 (e.g., stomatal density, photosynthetic/respiratory rates, foliar protein concentrations, growth, and resource allocation).
    Note: Additional, more specific objectives are included with each of the four lessons (Supporting Files S1-S4)
  • 3D Print Models: A collection of 3D models printed from online repository files.
  • Experimental design schematic
  • Format of a typical course meeting
  • Arabidopsis Seedling

    Linking Genotype to Phenotype: The Effect of a Mutation in Gibberellic Acid Production on Plant Germination

    Learning Objectives
    Students will be able to:
    • identify when germination occurs.
    • score germination in the presence and absence of GA to construct graphs of collated class data of wild-type and mutant specimens.
    • identify the genotype of an unknown sample based on the analysis of their graphical data.
    • organize data and perform quantitative data analysis.
    • explain the importance of GA for plant germination.
    • connect the inheritance of a mutation with the observed phenotype.