Skip to main content

You are here


Search found 22 items


  • blind cave fish
  • Playon Words Title Screen

    Using Gamification to Teach Undergraduate Students about Scientific Writing

    Learning Objectives
    Topics within Playon Words are grouped into “mini-games.” The Learning Objectives for each mini-game are as follows: Sentence Sensei
    • Identify the best sentence variant from a list of options
    • Identify and eliminate needless words
    • Identify where and when to use different types of punctuation marks
    • Identify and correct common grammar mistakes
    Organization Optimizer
    • Organize sentences in a logical order
    • Describe the components of different sections of a scientific paper
    • Identify the section of a scientific paper where a given sentence belongs
    • Eliminate sentences which do not belong in a given writing sample
    Science Officer Training
    • Classify statements as scientific or non-scientific
    • Identify which statements support a particular hypothesis or position
    • Classify provided sentences (e.g. hypotheses vs. predictions, problems vs. experiments, results vs. discussion)
    Reference Referee
    • Compare and contrast different types (e.g. primary literature, review articles, popular literature etc.) and sources (PubMed, Web of Science, Google Scholar etc.) of scientific information
    • Identify locations in texts where citations are needed
    • Identify citations and/or references that are incorrect or missing key information
    • Identify information that does not belong in the reference list (e.g. vendor information)
  • Format of a typical course meeting
  • Your Tax Dollars at Work: A mock grant writing experience centered on scientific process skills

    Learning Objectives
    Students will be able to:
    • Propose a testable, novel question contributing to a biological field of study.
    • Formulate a study rationale.
    • Describe relevant background information on a topic using the primary literature.
    • Choose appropriate scientific, mathematical, and statistical methods to analyze a research question.
    • Determine the financial costs of a research project.
    • Present a proposal for peer review and compose a constructive peer review.
    • Collaborate as a member of a scientific team.
    • Articulate the review criteria and process used in NSF-style proposal review.
  • SNP model by David Eccles (gringer) [GFDL ( or CC BY 4.0 (], via Wikimedia Commons

    Exploration of the Human Genome by Investigation of Personalized SNPs

    Learning Objectives
    Students successfully completing this lesson will be able to:
    • Effectively use the bioinformatics databases (SNPedia, the UCSC Genome Browser, and NCBI) to explore SNPs of interest within the human genome.
    • Identify three health-related SNPs of personal interest and use the UCSC Genome Browser to define their precise chromosomal locations and determine whether they lie within a gene or are intergenic.
    • Establish a list of all genome-wide association studies correlated with a particular health-related SNP.
    • Predict which model organism would be most appropriate for conducting further research on a human disease.
  • pClone Red Makes Research Look Easy

    Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Genetics (analyzing mutant...

    Learning Objectives
    • Describe how cells can produce proteins at the right time and correct amount. 
    • Diagram a bacterial promoter with −35 and −10 elements and the transcription start site.
    • Describe how mutational analysis can be used to study promoter sequence requirements.
    • Develop a promoter mutation hypothesis and design an experiment to test it.
    • Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments. 
    • Design an experiment to verify a mutated promoter has been cloned into a destination vector. 
    • Design an experiment to measure the strength of a promoter. 
    • Analyze data showing reporter protein produced and use the data to assess promoter strength. 
    • Define type IIs restriction enzymes.
    • Distinguish between type II and type IIs restriction enzymes.
    • Explain how Golden Gate Assembly (GGA) works.
    • Measure the relative strength of a promoter compared to a standard promoter.  
  • Mechanisms regulating the lac operon system

    Discovering Prokaryotic Gene Regulation by Building and Investigating a Computational Model of the lac Operon

    Learning Objectives
    Students will be able to:
    • model how the components of the lac operon contribute to gene regulation and expression.
    • generate and test predictions using computational modeling and simulations.
    • interpret and record graphs displaying simulation results.
    • relate simulation results to cellular events.
    • describe how changes in environmental glucose and lactose levels impact regulation of the lac operon.
    • predict, test, and explain how mutations in specific elements in the lac operon affect their protein product and other elements within the operon.
  • Results formula questions. Shows the five questions that comprise the formula for writing a scientific Results section.
  • Possible implementations of a short research module

    A Short Laboratory Module to Help Infuse Metacognition during an Introductory Course-based Research Experience

    Learning Objectives
    • Students will be able to evaluate the strengths and weaknesses of data.
    • Students will be able to employ prior knowledge in formulating a biological research question or hypothesis.
    • Students will be able to distinguish a research question from a testable hypothesis.
    • Students will recognize that the following are essential elements in experimental design: identifying gaps in prior knowledge, picking an appropriate approach (ex. experimental tools and controls) for testing a hypothesis, and reproducibility and repeatability.
    • Students will be able to identify appropriate experimental tools, approaches and controls to use in testing a hypothesis.
    • Students will be able to accurately explain why an experimental approach they have selected is a good choice for testing a particular hypothesis.
    • Students will be able to discuss whether experimental outcomes support or fail to support a particular hypothesis, and in the case of the latter, discuss possible reasons why.
  • pClone Red Makes Research Look Easy

    Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Introductory Biology (identifying...

    Learning Objectives
    • Describe how cells can produce proteins at the right time and correct amount.
    • Diagram how a repressor works to reduce transcription.
    • Diagram how an activator works to increase transcription.
    • Identify a new promoter from literature and design a method to clone it and test its function.
    • Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments.
    • Design an experiment to verify a new promoter has been cloned into a destination vector.
    • Design an experiment to measure the strength of a promoter.
    • Analyze data showing reporter protein produced and use the data to assess promoter strength.
    • Define type IIs restriction enzymes.
    • Distinguish between type II and type IIs restriction enzymes.
    • Explain how Golden Gate Assembly (GGA) works.
    • Measure the relative strength of a promoter compared to a standard promoter.
  • The mechanisms regulating the trp operon system.

    Discovering Prokaryotic Gene Regulation with Simulations of the trp Operon

    Learning Objectives
    Students will be able to:
    • Perturb and interpret simulations of the trp operon.
    • Define how simulation results relate to cellular events.
    • Describe the biological role of the trp operon.
    • Describe cellular mechanisms regulating the trp operon.
    • Explain mechanistically how changes in the extracellular environment affect the trp operon.
    • Define the impact of mutations on trp operon expression and regulation.
  • MA plot of RNA-seq data. An MA plot is a visual summary of gene expression data which identifies genes showing differential expression between two treatments.

    Tackling "Big Data" with Biology Undergrads: A Simple RNA-seq Data Analysis Tutorial Using Galaxy

    Learning Objectives
    • Students will locate and download high-throughput sequence data and genome annotation files from publically available data repositories.
    • Students will use Galaxy to create an automated computational workflow that performs sequence quality assessment, trimming, and mapping of RNA-seq data.
    • Students will analyze and interpret the outputs of RNA-seq analysis programs.
    • Students will identify a group of genes that is differentially expressed between treatment and control samples, and interpret the biological significance of this list of differentially expressed genes.
  • The MAP Kinase signal transduction pathway

    Cell Signaling Pathways - a Case Study Approach

    Learning Objectives
    • Use knowledge of positive and negative regulation of signaling pathways to predict the outcome of genetic modifications or pharmaceutical manipulation.
    • From phenotypic data, predict whether a mutation is in a coding or a regulatory region of a gene involved in signaling.
    • Use data, combined with knowledge of pathways, to make reasonable predictions about the genetic basis of altered signaling pathways.
    • Interpret and use pathway diagrams.
    • Synthesize information by applying prior knowledge on gene expression when considering congenital syndromes.
  • Figure 2. ICB-Students come to class prepared to discuss the text
  • A three-dimensional model of methionine is superimposed on a phase contrast micrograph of Saccharomyces cerevisiae from a log phase culture.

    Follow the Sulfur: Using Yeast Mutants to Study a Metabolic Pathway

    Learning Objectives
    At the end of this lesson, students will be able to:
    • use spot plating techniques to compare the growth of yeast strains on solid culture media.
    • predict the ability of specific met deletion strains to grow on media containing various sulfur sources.
    • predict how mutations in specific genes will affect the concentrations of metabolites in the pathways involved in methionine biosynthesis.
  • A A student assists Colorado Parks & Wildlife employees spawning greenback cutthroat trout at the Leadville National Fish Hatchery; B greenback cutthroat trout adults in a hatchery raceway; C tissue samples collected by students to be used for genetic analysis (images taken by S. Love Stowell)

    Cutthroat trout in Colorado: A case study connecting evolution and conservation

    Learning Objectives
    Students will be able to:
    • interpret figures such as maps, phylogenies, STRUCTURE plots, and networks for species delimitation
    • identify sources of uncertainty and disagreement in real data sets
    • propose research to address or remedy uncertainty
    • construct an evidence-based argument for the management of a rare taxon
  • Using phylogenetics to make inferences about historical biogeographic patterns of evolution.

    Building Trees: Introducing evolutionary concepts by exploring Crassulaceae phylogeny and biogeography

    Learning Objectives
    Students will be able to:
    • Estimate phylogenetic trees using diverse data types and phylogenetic models.
    • Correctly make inferences about evolutionary history and relatedness from the tree diagrams obtained.
    • Use selected computer programs for phylogenetic analysis.
    • Use bootstrapping to assess the statistical support for a phylogeny.
    • Use phylogenetic data to construct, compare, and evaluate the role of geologic processes in shaping the historical and current geographic distributions of a group of organisms.
  • Structure of protein ADA2

    Understanding Protein Domains: A Modular Approach

    Learning Objectives
    • Students will be able to compare protein sequences and identify conserved regions and putative domains.
    • Students will be able to obtain, examine, and compare structural models of protein domains.
    • Students will be able to interpret data on protein interactions (in vitro pull-down and in vitro and in vivo functional assays)
    • Students will be able to propose experiments to test protein interactions.
  • The mechanisms regulating the cellular respiration system.

    Discovering Cellular Respiration with Computational Modeling and Simulations

    Learning Objectives
    Students will be able to:
    • Describe how changes in cellular homeostasis affect metabolic intermediates.
    • Perturb and interpret a simulation of cellular respiration.
    • Describe cellular mechanisms regulating cellular respiration.
    • Describe how glucose, oxygen, and coenzymes affect cellular respiration.
    • Describe the interconnectedness of cellular respiration.
    • Identify and describe the inputs and outputs of cellular respiration, glycolysis, pyruvate processing, citric acid cycle, and the electron transport chain.
    • Describe how different energy sources are used in cellular respiration.
    • Trace carbon through cellular respiration from glucose to carbon dioxide.
  • Plant ecology students surveying vegetation at Red Hills, CA, spring 2012.  From left to right are G.L, F.D, A.M., and R.P.  Photo used with permission from all students.

    Out of Your Seat and on Your Feet! An adaptable course-based research project in plant ecology for advanced students

    Learning Objectives
    Students will:
    • Articulate testable hypotheses. (Lab 8, final presentation/paper, in-class exercises)
    • Analyze data to determine the level of support for articulated hypotheses. (Labs 4-7, final presentation/paper)
    • Identify multiple species of plants in the field quickly and accurately. (Labs 2-3, field trip)
    • Measure environmental variables and sample vegetation in the field. (Labs 2-3, field trip)
    • Analyze soil samples using a variety of low-tech lab techniques. (Open labs after field trip)
    • Use multiple statistical techniques to analyze data for patterns. (Labs 4-8, final presentation/paper)
    • Interpret statistical analyses to distinguish between strong and weak interactions in a biological system. (Labs 4-7, final presentation/paper)
    • Develop and present a conference-style presentation in a public forum. (Lab 8, final presentation/paper)
    • Write a publication-ready research paper communicating findings and displaying data. (Lab 8, final presentation/paper)
  • CRISPR/Cas9 in yeast experimental overview

    CRISPR/Cas9 in yeast: a multi-week laboratory exercise for undergraduate students

    Learning Objectives
    Week 1: CRISPR design
    • Locate the coding sequence, flanking sequence, protein product, and characteristics of a given gene from the Saccharomyces Genome Database (
    • Design and defend the design of guide RNA and single stranded template for DNA repair in CRISPR/Cas9 gene editing studies to generate Saccharomyces cerevisiae auxotrophic mutants.
    Week 3-4: Cloning
    • Describe the qualities of the vector, pML104, that allow replication and selection in bacteria and yeast as well as allow expression of necessary factors in CRISPR/Cas9 genome editing, including Cas9 and sgRNA.
    • Describe the rationale of and perform procedures necessary for cloning a small cassette (i.e., sgRNA gene) into a vector (i.e., pML104) including; restriction digest, annealing of DNA strands, removal of 5’ phosphates, ligation, and transformation.
    • Recognize and design appropriate controls for cloning procedures such as ligation and transformation.
    Week 5: Screening clones
    • Describe the method of polymerase chain reaction (PCR), including the rationale for essential components of a reaction mixture and thermal-cycling conditions.
    • Locate the binding sites of and design primers for PCR, then report the expected size of the amplification product.
    • Describe and perform isolation of plasmid DNA from E. coli.  
    Week 6: Selection of clones and transformation of yeast
    • Describe the rationale for and perform procedures to transform yeast, including the essential components of a transformation mixture and conditions necessary for transformation.
    • Describe the basic conditions required for cultivating yeast.
    • Describe the rationale for and perform agarose gel electrophoresis of a given size of DNA.
    • Analyze DNA separated by agarose gel electrophoresis, including size estimation.
    • Recognize and describe the qualities of a template for DNA repair that allows efficient DNA repair. 
    Week 7: Phenotyping
    • Design an experiment to determine auxotrophic phenotypes.
    • Predict the outcome of multi-step experiments.
    • Recognize and describe conditions necessary for growth of E. coli and S. cerevisiae.
    • Qualitatively and quantitatively analyze scientific data from scientific experiments, including bacterial and yeast transformation, agarose gel electrophoresis, extraction of plasmid DNA from bacteria, PCR, and auxotroph phenotypic analysis.
    • Communicate science to peers through maintenance of a laboratory notebook, verbal communication with group members, and writing of a formal laboratory report written in a format acceptable for journal publication.
    • Troubleshoot scientific protocols by identifying procedures that are prone to error, comparing recommended protocols to actual procedure, and using positive and negative controls to narrow the location of a potential error.
    • Communicate specific potential or actual uses of CRISPR/Cas9 in science and/or medicine.
    Alignment with Society-Generated Learning Objectives - From Biochemistry and Molecular Biology, and Genetics Learning Frameworks
    • Use various bioinformatics approaches to analyze macromolecular primary sequence and structure.
    • Illustrate how DNA is replicated and genes are transmitted from one generation to the next in multiple types of organisms including bacteria, eukaryotes, viruses, and retroviruses.
    • Define what a genome consists of and how the information in various genes and other sequence classes within each genome are used to store and express genetic information.
    • Explain the meaning of ploidy (haploid, diploid, aneuploid etc.) and how it relates to the number of homologues of each chromosome. 
    • Predict the effects of mutations on the activity, structure, or stability of a protein and design appropriate experiments to assess the effects of mutations.
    • Predict the growth behavior of microbes based on their growth conditions, e.g., temperature, available nutrient, aeration level, etc.
    • Discuss the benefits of specific tools of modern biotechnology that are derived from naturally occurring microbes (e.g. cloning vectors, restriction enzymes, Taq polymerase, etc.)
    • Accurately prepare and use reagents and perform experiments.
    • When presented with an observation, develop a testable and falsifiable hypothesis.
    • When provided with a hypothesis, identify the appropriate experimental observations and controllable variables.
  • An active-learning lesson that targets student understanding of population growth in ecology

    Learning Objectives
    Students will be able to:
    • Calculate and compare population density and abundance.
    • Identify whether a growth curve describes exponential, linear, and/or logistic growth.
    • Describe and calculate a population's growth rate using linear, exponential, and logistic models.
    • Explain the influence of carrying capacity and population density on growth rate.