Skip to main content

You are here

Filters

Search found 11 items

Search

  • blind cave fish
  • Enzymatic avocado browning is driven by polyphenol oxidase. Mashed avocado pulp is bright green but turns dark brown over the course of two hours at room temperature in the presence of air and salt. This reaction can be accelerated or inhibited by more than 20 different testable reagents, allowing students to explore experimental design.

    The Avocado Lab: An Inquiry-Driven Exploration of an Enzymatic Browning Reaction

    Learning Objectives
    Students will be able to:
    • develop a testable research question and supportive hypothesis regarding the browning of damaged avocado flesh caused by the activity of avocado polyphenol oxidase (aPPO).
    • design and execute a well-controlled experiment to test aPPO hypotheses.
    • evaluate qualitative enzyme activity data.
    • create a figure and legend to present qualitative data that tests multiple hypotheses and variables.
    • search for and correctly cite primary literature to support or refute hypotheses.
    • know the role of reducing reagents, pH, chelators, and temperature in reactions catalyzed by aPPO.
    • explain why the effects of salt and detergent differ for aPPO experiments conducted in situ
    • (in mashed avocado flesh) as compared to in vitro (on purified protein).
    • discuss how substrate and cofactor availability affect aPPO reactions.
    • describe how endogenous subcellular organization restricts aPPO reactions in a healthy avocado.
    • evaluate food handling practices for fruits expressing PPO.
  • Image from http://www.epa.gov/airdata/ad_maps.html

    Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues

    Learning Objectives
    Students will be able to:
    • Describe various parameters of air quality that can negatively impact human health, list priority air pollutants, and interpret the EPA Air Quality Index as it relates to human health.
    • Identify an air quality problem that varies on spatial and/or temporal scales that can be addressed using publicly available U.S. EPA air data.
    • Collect appropriate U.S. EPA Airdata information needed to answer that/those questions, using the U.S. EPA Airdata website data mining tools.
    • Analyze the data as needed to address or answer their question(s).
    • Interpret data and draw conclusions regarding air quality levels and/or impacts on human and public health.
    • Communicate results in the form of a scientific paper.
  • This collage contains original images taken by the course instructor. The images show a microscopic view of stomata on the underside of a Brassica rapa leaf (A), B. rapa plants in their growth trays (B), a flowering B. rapa plant (C), and different concentrations of foliar protein (D). Photos edited via Microsoft Windows Photo Editor and Phototastic Collage Maker.

    A flexible, multi-week approach to plant biology - How will plants respond to higher levels of CO2?

    Learning Objectives
    Students will be able to:
    • Apply findings from each week's lesson to make predictions and informed hypotheses about the next week's lesson.
    • Keep a detailed laboratory notebook.
    • Write and peer-edit the sections of a scientific paper, and collaboratively write an entire lab report in the form of a scientific research paper.
    • Search for, find, and read scientific research papers.
    • Work together as a team to conduct experiments.
    • Connect findings and ideas from each week's lesson to get a broader understanding of how plants will respond to higher levels of CO2 (e.g., stomatal density, photosynthetic/respiratory rates, foliar protein concentrations, growth, and resource allocation).
    Note: Additional, more specific objectives are included with each of the four lessons (Supporting Files S1-S4)
  • Possible implementations of a short research module

    A Short Laboratory Module to Help Infuse Metacognition during an Introductory Course-based Research Experience

    Learning Objectives
    • Students will be able to evaluate the strengths and weaknesses of data.
    • Students will be able to employ prior knowledge in formulating a biological research question or hypothesis.
    • Students will be able to distinguish a research question from a testable hypothesis.
    • Students will recognize that the following are essential elements in experimental design: identifying gaps in prior knowledge, picking an appropriate approach (ex. experimental tools and controls) for testing a hypothesis, and reproducibility and repeatability.
    • Students will be able to identify appropriate experimental tools, approaches and controls to use in testing a hypothesis.
    • Students will be able to accurately explain why an experimental approach they have selected is a good choice for testing a particular hypothesis.
    • Students will be able to discuss whether experimental outcomes support or fail to support a particular hypothesis, and in the case of the latter, discuss possible reasons why.
  • Using phylogenetics to make inferences about historical biogeographic patterns of evolution.

    Building Trees: Introducing evolutionary concepts by exploring Crassulaceae phylogeny and biogeography

    Learning Objectives
    Students will be able to:
    • Estimate phylogenetic trees using diverse data types and phylogenetic models.
    • Correctly make inferences about evolutionary history and relatedness from the tree diagrams obtained.
    • Use selected computer programs for phylogenetic analysis.
    • Use bootstrapping to assess the statistical support for a phylogeny.
    • Use phylogenetic data to construct, compare, and evaluate the role of geologic processes in shaping the historical and current geographic distributions of a group of organisms.
  • Medical students at a fair. Credit: Danieladelrio

    Casting a Wide Net via Case Studies: Educating across the undergraduate to medical school continuum in the biological...

    Learning Objectives
    At the end of this lesson, the student should be able to:
    • Consider the potential advantages and disadvantages of widespread use of whole genome sequencing and direct-to-consumer genetic testing.
    • Explore the critical need to maintain privacy of individual genetic test results to protect patient interests.
    • Dissect the nuances of reporting whole genome sequencing results.
    • Recognize the economic ramifications of precision medicine strategies.
    • Formulate a deeper understanding of the ethical dimensions of emerging genetic testing technologies.
  • Format of a typical course meeting
  • Results formula questions. Shows the five questions that comprise the formula for writing a scientific Results section.
  • A photo of grizzly bears fishing in the McNeil Falls in Alaska, taken using BearCam by Lawrence Griffing.

    Authentic Ecological Inquiries Using BearCam Archives

    Learning Objectives
    Students will be able to:
    • conduct an authentic ecological inquiry including
      • generate a testable hypothesis based on observations,
      • design investigation with appropriate sampling selection and variables,
      • collect and analyze data following the design, and
      • interpret results and draw conclusions based on the evidence.
    • write a research report with appropriate structure and style.
    • evaluate the quality of inquiry reports using a rubric.
    • conduct peer review to evaluate and provide feedback to others' work.
    • revise the inquiry report based on peer feedback and self-assessment.
  • Figure 2. ICB-Students come to class prepared to discuss the text