You are here
- Home
- Search
Filters
Search found 20 items
- (-) Remove Assessment of individual student performance filter Assessment of individual student performance
- (-) Remove Lab filter Lab
- (-) Remove Interpreting results/data filter Interpreting results/data
- (-) Remove Information flow, exchange and storage filter Information flow, exchange and storage
Course
- Genetics (11) Apply Genetics filter
- Biochemistry and Molecular Biology (9) Apply Biochemistry and Molecular Biology filter
- Science Process Skills (9) Apply Science Process Skills filter
- Bioinformatics (6) Apply Bioinformatics filter
- Introductory Biology (6) Apply Introductory Biology filter
- Anatomy-Physiology (2) Apply Anatomy-Physiology filter
- Cell Biology (2) Apply Cell Biology filter
- Microbiology (2) Apply Microbiology filter
- Developmental Biology (1) Apply Developmental Biology filter
- Ecology (1) Apply Ecology filter
- Plant Biology (1) Apply Plant Biology filter
- (none) (0)
- Evolution (0)
- Neurobiology (0)
- Professional Development and Career Planning (0)
Vision and Change Core Competencies
- Ability to apply the process of science (15) Apply Ability to apply the process of science filter
- Ability to use quantitative reasoning (14) Apply Ability to use quantitative reasoning filter
- Ability to tap into the interdisciplinary nature of science (9) Apply Ability to tap into the interdisciplinary nature of science filter
- Ability to communicate and collaborate with other disciplines (8) Apply Ability to communicate and collaborate with other disciplines filter
- Ability to understand the relationship between science and society (6) Apply Ability to understand the relationship between science and society filter
- Ability to use modeling and simulation (5) Apply Ability to use modeling and simulation filter
Vision and Change Core Concepts
- (-) Remove Information flow, exchange and storage filter Information flow, exchange and storage
- Structure and Function (8) Apply Structure and Function filter
- Systems (3) Apply Systems filter
- Pathways and transformations of energy and matter (2) Apply Pathways and transformations of energy and matter filter
- Evolution (1) Apply Evolution filter
Audience
- Life Sciences Major (18) Apply Life Sciences Major filter
- 4-year College (9) Apply 4-year College filter
- Non-Life Science Major (6) Apply Non-Life Science Major filter
- University (6) Apply University filter
- 2-year College (5) Apply 2-year College filter
- Non-Traditional Student (3) Apply Non-Traditional Student filter
Key Scientific Process Skills
- (-) Remove Interpreting results/data filter Interpreting results/data
- Analyzing data (19) Apply Analyzing data filter
- Gathering data/making observations (16) Apply Gathering data/making observations filter
- Communicating results (15) Apply Communicating results filter
- Displaying/modeling results/data (15) Apply Displaying/modeling results/data filter
- Formulating hypotheses (14) Apply Formulating hypotheses filter
- Designing/conducting experiments (12) Apply Designing/conducting experiments filter
- Predicting outcomes (10) Apply Predicting outcomes filter
- Asking a question (8) Apply Asking a question filter
- Reading research papers (4) Apply Reading research papers filter
- Reviewing prior research (4) Apply Reviewing prior research filter
Pedagogical Approaches
- Collaborative Work (17) Apply Collaborative Work filter
- Brainstorming (7) Apply Brainstorming filter
- Pre/Post Question (7) Apply Pre/Post Question filter
- Interactive Lecture (6) Apply Interactive Lecture filter
- Computer Model (4) Apply Computer Model filter
- Other (4) Apply Other filter
- Think-Pair-Share (4) Apply Think-Pair-Share filter
- Reflective Writing (3) Apply Reflective Writing filter
Principles of How People Learn
- Requires student to do the bulk of the work (17) Apply Requires student to do the bulk of the work filter
- Motivates student to learn material (15) Apply Motivates student to learn material filter
- Develops supportive community of learners (11) Apply Develops supportive community of learners filter
- Focuses student on the material to be learned (10) Apply Focuses student on the material to be learned filter
- Reveals prior knowledge (10) Apply Reveals prior knowledge filter
- Leverages differences among learners (4) Apply Leverages differences among learners filter
Assessment Type
- (-) Remove Assessment of individual student performance filter Assessment of individual student performance
- Interpret data (13) Apply Interpret data filter
- Assessment of student groups/teams (11) Apply Assessment of student groups/teams filter
- Design an experiment or research study (10) Apply Design an experiment or research study filter
- Assignment (8) Apply Assignment filter
- Create graph, table etc. to present data (8) Apply Create graph, table etc. to present data filter
- Written assignment: Figure and or figure legend (8) Apply Written assignment: Figure and or figure legend filter
- Create a diagram, drawing, figure, etc. (7) Apply Create a diagram, drawing, figure, etc. filter
- Participate in discussion (7) Apply Participate in discussion filter
- Written assignment: Lab report (7) Apply Written assignment: Lab report filter
- Answer short answer question(s) (6) Apply Answer short answer question(s) filter
- Self evaluation (6) Apply Self evaluation filter
- Answer multiple choice question(s) (5) Apply Answer multiple choice question(s) filter
- Solve problem(s) (5) Apply Solve problem(s) filter
- Exam/quiz, in class (4) Apply Exam/quiz, in class filter
- Give an oral presentation (4) Apply Give an oral presentation filter
- Homework (4) Apply Homework filter
- Peer evaluation (3) Apply Peer evaluation filter
- Answer essay question(s) (2) Apply Answer essay question(s) filter
- Answer fill in the blank question(s) (2) Apply Answer fill in the blank question(s) filter
- Design/present a poster (2) Apply Design/present a poster filter
- Post-test (2) Apply Post-test filter
- Pre-test (2) Apply Pre-test filter
- Exam/quiz, take home (1) Apply Exam/quiz, take home filter
- Informal in-class report (1) Apply Informal in-class report filter
- Respond to metacognition/reflection prompt (1) Apply Respond to metacognition/reflection prompt filter
- Written assignment: Literature review (1) Apply Written assignment: Literature review filter
Search
-
CRISPR/Cas9 in yeast: a multi-week laboratory exercise for undergraduate students
Learning ObjectivesWeek 1: CRISPR design- Locate the coding sequence, flanking sequence, protein product, and characteristics of a given gene from the Saccharomyces Genome Database (https://www.yeastgenome.org/).
- Design and defend the design of guide RNA and single stranded template for DNA repair in CRISPR/Cas9 gene editing studies to generate Saccharomyces cerevisiae auxotrophic mutants.
- Describe the qualities of the vector, pML104, that allow replication and selection in bacteria and yeast as well as allow expression of necessary factors in CRISPR/Cas9 genome editing, including Cas9 and sgRNA.
- Describe the rationale of and perform procedures necessary for cloning a small cassette (i.e., sgRNA gene) into a vector (i.e., pML104) including; restriction digest, annealing of DNA strands, removal of 5’ phosphates, ligation, and transformation.
- Recognize and design appropriate controls for cloning procedures such as ligation and transformation.
- Describe the method of polymerase chain reaction (PCR), including the rationale for essential components of a reaction mixture and thermal-cycling conditions.
- Locate the binding sites of and design primers for PCR, then report the expected size of the amplification product.
- Describe and perform isolation of plasmid DNA from E. coli.
- Describe the rationale for and perform procedures to transform yeast, including the essential components of a transformation mixture and conditions necessary for transformation.
- Describe the basic conditions required for cultivating yeast.
- Describe the rationale for and perform agarose gel electrophoresis of a given size of DNA.
- Analyze DNA separated by agarose gel electrophoresis, including size estimation.
- Recognize and describe the qualities of a template for DNA repair that allows efficient DNA repair.
- Design an experiment to determine auxotrophic phenotypes.
- Predict the outcome of multi-step experiments.
- Recognize and describe conditions necessary for growth of E. coli and S. cerevisiae.
- Qualitatively and quantitatively analyze scientific data from scientific experiments, including bacterial and yeast transformation, agarose gel electrophoresis, extraction of plasmid DNA from bacteria, PCR, and auxotroph phenotypic analysis.
- Communicate science to peers through maintenance of a laboratory notebook, verbal communication with group members, and writing of a formal laboratory report written in a format acceptable for journal publication.
- Troubleshoot scientific protocols by identifying procedures that are prone to error, comparing recommended protocols to actual procedure, and using positive and negative controls to narrow the location of a potential error.
- Communicate specific potential or actual uses of CRISPR/Cas9 in science and/or medicine.
- Use various bioinformatics approaches to analyze macromolecular primary sequence and structure.
- Illustrate how DNA is replicated and genes are transmitted from one generation to the next in multiple types of organisms including bacteria, eukaryotes, viruses, and retroviruses.
- Define what a genome consists of and how the information in various genes and other sequence classes within each genome are used to store and express genetic information.
- Explain the meaning of ploidy (haploid, diploid, aneuploid etc.) and how it relates to the number of homologues of each chromosome.
- Predict the effects of mutations on the activity, structure, or stability of a protein and design appropriate experiments to assess the effects of mutations.
- Predict the growth behavior of microbes based on their growth conditions, e.g., temperature, available nutrient, aeration level, etc.
- Discuss the benefits of specific tools of modern biotechnology that are derived from naturally occurring microbes (e.g. cloning vectors, restriction enzymes, Taq polymerase, etc.)
- Accurately prepare and use reagents and perform experiments.
- When presented with an observation, develop a testable and falsifiable hypothesis.
- When provided with a hypothesis, identify the appropriate experimental observations and controllable variables.
-
The Science Behind the ACTN3 Polymorphism
Learning ObjectivesThis article accompanies the lesson "The ACTN3 Polymorphism: Applications in Genetics and Physiology Teaching Laboratories." Learning objectives for the lesson include:- Test hypotheses related to the role of ACTN3 in skeletal muscle function.
- Explain how polymorphic variants of the ACTN3 gene affect protein structure and function.
- List and explain the differences between fast twitch and slow twitch muscle fibers.
- List and explain possible roles of the ACTN3 protein in skeletal muscle function.
- Find and analyze relevant scientific publications about the relationship between ACTN3 genotype and muscle function.
- Formulate hypotheses related to the relationship between ACTN3 genotype and skeletal muscle function.
- Design experiments to test hypotheses about the role of ACTN3 in skeletal muscle function.
- Statistically analyze experimental results using relevant software.
- Present experimental results in writing.
-
A CURE-based approach to teaching genomics using mitochondrial genomes
Learning Objectives- Install the appropriate programs such as Putty and WinSCP.
- Navigate NCBI's website including their different BLAST programs (e.g., blastn, tblastx, blastp and blastx)
- Use command-line BLAST to identify mitochondrial contigs within a whole genome assembly
- Filter the desired sequence (using grep) and move the assembled mitochondrial genome onto your own computer (using FTP or SCP)
- Error-correct contigs (bwa mem, samtools tview), connect and circularize organellar contigs (extending from filtered reads)
- Transform assembled sequences into annotated genomes
- Orient to canonical start locations in the mitochondrial genome (cox1)
- Identify the boundaries of all coding components of the mitochondrial genome using BLAST, including: Protein coding genes (BLASTx and tBLASTX), tRNAs (proprietary programs such as tRNAscan), rRNAs (BLASTn, Chlorobox), ORFs (NCBI's ORFFinder)
- Deposit annotation onto genome repository (NCBI)
- Update CV/resume to reflect bioinformatics skills learned in this lesson
-
Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues
Learning ObjectivesStudents will be able to:- Describe various parameters of air quality that can negatively impact human health, list priority air pollutants, and interpret the EPA Air Quality Index as it relates to human health.
- Identify an air quality problem that varies on spatial and/or temporal scales that can be addressed using publicly available U.S. EPA air data.
- Collect appropriate U.S. EPA Airdata information needed to answer that/those questions, using the U.S. EPA Airdata website data mining tools.
- Analyze the data as needed to address or answer their question(s).
- Interpret data and draw conclusions regarding air quality levels and/or impacts on human and public health.
- Communicate results in the form of a scientific paper.
-
A Short Laboratory Module to Help Infuse Metacognition during an Introductory Course-based Research Experience
Learning Objectives- Students will be able to evaluate the strengths and weaknesses of data.
- Students will be able to employ prior knowledge in formulating a biological research question or hypothesis.
- Students will be able to distinguish a research question from a testable hypothesis.
- Students will recognize that the following are essential elements in experimental design: identifying gaps in prior knowledge, picking an appropriate approach (ex. experimental tools and controls) for testing a hypothesis, and reproducibility and repeatability.
- Students will be able to identify appropriate experimental tools, approaches and controls to use in testing a hypothesis.
- Students will be able to accurately explain why an experimental approach they have selected is a good choice for testing a particular hypothesis.
- Students will be able to discuss whether experimental outcomes support or fail to support a particular hypothesis, and in the case of the latter, discuss possible reasons why.
-
Visits to the writing center and office hours provide students structured reflection and low-stakes feedback on...
Learning Objectives- Students will be able to write a lab report that contains a descriptive title, complete and concise abstract, substantive and relevant introduction that includes a testable hypothesis, descriptive methods, description and comparison of results of various testable groups, biological explanation of the results that reflect the testable hypothesis, a conclusion that contains societal implications or scientific impact, and references cited in the document.
- Students will be able to self-identify weaknesses and strengths of their writing.
- Students will understand how to utilize office hours and the writing center to receive feedback on their lab reports.
-
The ACTN3 Polymorphism: Applications in Genetics and Physiology Teaching Laboratories
Learning Objectives- Test hypotheses related to the role of ACTN3 in skeletal muscle function.
- Explain how polymorphic variants of the ACTN3 gene affect protein structure and function.
- List and explain the differences between fast twitch and slow twitch muscle fibers.
- List and explain possible roles of the ACTN3 protein in skeletal muscle function.
- Find and analyze relevant scientific publications about the relationship between ACTN3 genotype and muscle function.
- Formulate hypotheses related to the relationship between ACTN3 genotype and skeletal muscle function.
- Design experiments to test hypotheses about the role of ACTN3 in skeletal muscle function.
- Statistically analyze experimental results using relevant software.
- Present experimental results in writing.
-
Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Genetics (analyzing mutant...
Learning Objectives- Describe how cells can produce proteins at the right time and correct amount.
- Diagram a bacterial promoter with −35 and −10 elements and the transcription start site.
- Describe how mutational analysis can be used to study promoter sequence requirements.
- Develop a promoter mutation hypothesis and design an experiment to test it.
- Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments.
- Design an experiment to verify a mutated promoter has been cloned into a destination vector.
- Design an experiment to measure the strength of a promoter.
- Analyze data showing reporter protein produced and use the data to assess promoter strength.
- Define type IIs restriction enzymes.
- Distinguish between type II and type IIs restriction enzymes.
- Explain how Golden Gate Assembly (GGA) works.
- Measure the relative strength of a promoter compared to a standard promoter.
-
Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Introductory Biology (identifying...
Learning Objectives- Describe how cells can produce proteins at the right time and correct amount.
- Diagram how a repressor works to reduce transcription.
- Diagram how an activator works to increase transcription.
- Identify a new promoter from literature and design a method to clone it and test its function.
- Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments.
- Design an experiment to verify a new promoter has been cloned into a destination vector.
- Design an experiment to measure the strength of a promoter.
- Analyze data showing reporter protein produced and use the data to assess promoter strength.
- Define type IIs restriction enzymes.
- Distinguish between type II and type IIs restriction enzymes.
- Explain how Golden Gate Assembly (GGA) works.
- Measure the relative strength of a promoter compared to a standard promoter.
-
Exploration of the Human Genome by Investigation of Personalized SNPs
Learning ObjectivesStudents successfully completing this lesson will be able to:- Effectively use the bioinformatics databases (SNPedia, the UCSC Genome Browser, and NCBI) to explore SNPs of interest within the human genome.
- Identify three health-related SNPs of personal interest and use the UCSC Genome Browser to define their precise chromosomal locations and determine whether they lie within a gene or are intergenic.
- Establish a list of all genome-wide association studies correlated with a particular health-related SNP.
- Predict which model organism would be most appropriate for conducting further research on a human disease.
-
Investigating Cell Signaling with Gene Expression Datasets
Learning ObjectivesStudents will be able to:- Explain the hierarchical organization of signal transduction pathways.
- Explain the role of enzymes in signal propagation and amplification.
- Recognize the centrality of signaling pathways in cellular processes, such as metabolism, cell division, or cell motility.
- Rationalize the etiologic basis of disease in terms of deranged signaling pathways.
- Use software to analyze and interpret gene expression data.
- Use an appropriate statistical method for hypotheses testing.
- Produce reports that are written in scientific style.
-
An undergraduate bioinformatics curriculum that teaches eukaryotic gene structure
Learning ObjectivesModule 1- Demonstrate basic skills in using the UCSC Genome Browser to navigate to a genomic region and to control the display settings for different evidence tracks.
- Explain the relationships among DNA, pre-mRNA, mRNA, and protein.
- Describe how a primary transcript (pre-mRNA) can be synthesized using a DNA molecule as the template.
- Explain the importance of the 5' and 3' regions of the gene for initiation and termination of transcription by RNA polymerase II.
- Identify the beginning and the end of a transcript using the capabilities of the genome browser.
- Explain how the primary transcript generated by RNA polymerase II is processed to become a mature mRNA, using the sequence signals identified in Module 2.
- Use the genome browser to analyze the relationships among:
- pre-mRNA
- 5' capping
- 3' polyadenylation
- splicing
- mRNA
- Identify splice donor and acceptor sites that are best supported by RNA-Seq data and TopHat splice junction predictions.
- Utilize the canonical splice donor and splice acceptor sequences to identify intron-exon boundaries.
- Determine the codons for specific amino acids and identify reading frames by examining the Base Position track in the genome browser.
- Assemble exons to maintain the open reading frame (ORF) for a given gene.
- Define the phases of the splice donor and acceptor sites and describe how they impact the maintenance of the ORF.
- Identify the start and stop codons of an assembled ORF.
- Demonstrate how alternative splicing of a gene can lead to different mRNAs.
- Show how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.
-
Follow the Sulfur: Using Yeast Mutants to Study a Metabolic Pathway
Learning ObjectivesAt the end of this lesson, students will be able to:- use spot plating techniques to compare the growth of yeast strains on solid culture media.
- predict the ability of specific met deletion strains to grow on media containing various sulfur sources.
- predict how mutations in specific genes will affect the concentrations of metabolites in the pathways involved in methionine biosynthesis.
-
Understanding Protein Domains: A Modular Approach
Learning Objectives- Students will be able to compare protein sequences and identify conserved regions and putative domains.
- Students will be able to obtain, examine, and compare structural models of protein domains.
- Students will be able to interpret data on protein interactions (in vitro pull-down and in vitro and in vivo functional assays)
- Students will be able to propose experiments to test protein interactions.
-
Using CRISPR-Cas9 to teach the fundamentals of molecular biology and experimental design
Learning ObjectivesModule 1- Generate a testable hypothesis that requires a creative design of reagents based on critical reading of and review of prior research.
- Demonstrate proficiency in using molecular cloning software to analyze, manipulate and verify DNA sequences.
- Predict the downstream effect on the mRNA and protein after successfully inserting a DNA repair template into the genome of a cell/organism.
- Compare and contrast the processes of DNA duplication and PCR.
- Demonstrate the ability to design primers to amplify a nucleotide sequence.
- Analyze and evaluate the results of DNA agarose gel electrophoresis.
- Identify the key features in genomic DNA, specifically those required for CRISPR-Cas9 mediated gene edits.
- Explain how compatible ends of DNA are used to produce recombinant DNA in a ligation reaction.
- Explain the chemical principles behind plasmid DNA purification from bacterial cultures.
- Devise a strategy to screen clones based on antibiotic selection and the mechanism of digestion by DNA endonucleases.
- Predict and evaluate the results of a diagnostic digest.
- Explain the chemical principles behind DNA purification using phenol-chloroform extraction and ethanol precipitation.
- Explain the key differences between DNA duplication and transcription.
- Demonstrate the ability to perform lab work with sterile technique.
- Compare and contrast the results of a non-denaturing vs. denaturing agarose gel.
- Evaluate the results of a denaturing agarose gel.
- Design and implement an experiment that tests the CRISPR-Cas9 principle.
- Predict the outcome of a successful in vitro Cas9 digest.
- Summarize important background information on gene of interest from analysis of primary literature.
- Produce figures and figure legends that clearly indicate results.
- Organize and construct a poster that clearly and professionally displays the important aspects of the lesson.
- Demonstrate understanding of the lesson by presenting a poster to an audience in lay terms, mid-level terms, or at an expert level.
- Demonstrate understanding of procedures by writing a formal materials and methods paper.
-
Tackling "Big Data" with Biology Undergrads: A Simple RNA-seq Data Analysis Tutorial Using Galaxy
Learning Objectives- Students will locate and download high-throughput sequence data and genome annotation files from publically available data repositories.
- Students will use Galaxy to create an automated computational workflow that performs sequence quality assessment, trimming, and mapping of RNA-seq data.
- Students will analyze and interpret the outputs of RNA-seq analysis programs.
- Students will identify a group of genes that is differentially expressed between treatment and control samples, and interpret the biological significance of this list of differentially expressed genes.