Skip to main content

You are here

Filters

Search

  • A A student assists Colorado Parks & Wildlife employees spawning greenback cutthroat trout at the Leadville National Fish Hatchery; B greenback cutthroat trout adults in a hatchery raceway; C tissue samples collected by students to be used for genetic analysis (images taken by S. Love Stowell)

    Cutthroat trout in Colorado: A case study connecting evolution and conservation

    Learning Objectives
    Students will be able to:
    • interpret figures such as maps, phylogenies, STRUCTURE plots, and networks for species delimitation
    • identify sources of uncertainty and disagreement in real data sets
    • propose research to address or remedy uncertainty
    • construct an evidence-based argument for the management of a rare taxon
  • Structure of protein ADA2

    Understanding Protein Domains: A Modular Approach

    Learning Objectives
    • Students will be able to compare protein sequences and identify conserved regions and putative domains.
    • Students will be able to obtain, examine, and compare structural models of protein domains.
    • Students will be able to interpret data on protein interactions (in vitro pull-down and in vitro and in vivo functional assays)
    • Students will be able to propose experiments to test protein interactions.
  • Students using the Understanding Eukaryotic Genes curriculum to construct a gene model. Students are working as a pair to complete each Module using classroom computers.

    An undergraduate bioinformatics curriculum that teaches eukaryotic gene structure

    Learning Objectives
    Module 1
    • Demonstrate basic skills in using the UCSC Genome Browser to navigate to a genomic region and to control the display settings for different evidence tracks.
    • Explain the relationships among DNA, pre-mRNA, mRNA, and protein.
    Module 2
    • Describe how a primary transcript (pre-mRNA) can be synthesized using a DNA molecule as the template.
    • Explain the importance of the 5' and 3' regions of the gene for initiation and termination of transcription by RNA polymerase II.
    • Identify the beginning and the end of a transcript using the capabilities of the genome browser.
    Module 3
    • Explain how the primary transcript generated by RNA polymerase II is processed to become a mature mRNA, using the sequence signals identified in Module 2.
    • Use the genome browser to analyze the relationships among:
    • pre-mRNA
    • 5' capping
    • 3' polyadenylation
    • splicing
    • mRNA
    Module 4
    • Identify splice donor and acceptor sites that are best supported by RNA-Seq data and TopHat splice junction predictions.
    • Utilize the canonical splice donor and splice acceptor sequences to identify intron-exon boundaries.
    Module 5
    • Determine the codons for specific amino acids and identify reading frames by examining the Base Position track in the genome browser.
    • Assemble exons to maintain the open reading frame (ORF) for a given gene.
    • Define the phases of the splice donor and acceptor sites and describe how they impact the maintenance of the ORF.
    • Identify the start and stop codons of an assembled ORF.
    Module 6
    • Demonstrate how alternative splicing of a gene can lead to different mRNAs.
    • Show how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.