Skip to main content

You are here

Filters

Search found 9 items

Search

  • This is the question when working with pH and pKa. This is original artwork by the author and no copyright is violated.

    Taking the Hassle out of Hasselbalch

    Learning Objectives
    Students will be able to:
    1. Characterize an aqueous environment as acidic or basic.
    2. Explain that pKa is a measure of how easy it is to remove a proton from a molecule.
    3. Predict ionization state of a molecule at a particular pH based on its pKa (qualitative use of the Henderson-Hasselbalch equation).
    4. Calculate the ratio of protonated/unprotonated forms of ionizable groups depending on chemical characteristics and /or environment pH (quantitative use of the Henderson-Hasselbalch equation).
    5. Apply this knowledge in a medical context.
  • A A student assists Colorado Parks & Wildlife employees spawning greenback cutthroat trout at the Leadville National Fish Hatchery; B greenback cutthroat trout adults in a hatchery raceway; C tissue samples collected by students to be used for genetic analysis (images taken by S. Love Stowell)

    Cutthroat trout in Colorado: A case study connecting evolution and conservation

    Learning Objectives
    Students will be able to:
    • interpret figures such as maps, phylogenies, STRUCTURE plots, and networks for species delimitation
    • identify sources of uncertainty and disagreement in real data sets
    • propose research to address or remedy uncertainty
    • construct an evidence-based argument for the management of a rare taxon
  • Madhumathi S V (2013) This image is license under a Creative Commons Atrribution-Share Alike 4.0 International.  https://commons.wikimedia.org/wiki/File:Business_ethics.jpg

    Priority Setting in Public Health: A lesson in ethics and hard choices

    Learning Objectives
    At the end of this unit, students will be able to:
    • Define the central distinction between public health and medicine
    • Apply objectives of public health and individual medical care in a particular situation to identify potential areas of conflict in priority setting
    • Apply moral theories of utilitarianism and deontology to a particular situation to identify the course of action proponents of each theory would see as morally justified
    • Identify the range of morally justifiable actions that might be available to a health professional in a particular setting
    • Choose from among a range of possible actions in a particular health situation and articulate the ethical principles that would justify that choice.
  • The mechanisms regulating the trp operon system.

    Discovering Prokaryotic Gene Regulation with Simulations of the trp Operon

    Learning Objectives
    Students will be able to:
    • Perturb and interpret simulations of the trp operon.
    • Define how simulation results relate to cellular events.
    • Describe the biological role of the trp operon.
    • Describe cellular mechanisms regulating the trp operon.
    • Explain mechanistically how changes in the extracellular environment affect the trp operon.
    • Define the impact of mutations on trp operon expression and regulation.
  • Students using the Understanding Eukaryotic Genes curriculum to construct a gene model. Students are working as a pair to complete each Module using classroom computers.

    An undergraduate bioinformatics curriculum that teaches eukaryotic gene structure

    Learning Objectives
    Module 1
    • Demonstrate basic skills in using the UCSC Genome Browser to navigate to a genomic region and to control the display settings for different evidence tracks.
    • Explain the relationships among DNA, pre-mRNA, mRNA, and protein.
    Module 2
    • Describe how a primary transcript (pre-mRNA) can be synthesized using a DNA molecule as the template.
    • Explain the importance of the 5' and 3' regions of the gene for initiation and termination of transcription by RNA polymerase II.
    • Identify the beginning and the end of a transcript using the capabilities of the genome browser.
    Module 3
    • Explain how the primary transcript generated by RNA polymerase II is processed to become a mature mRNA, using the sequence signals identified in Module 2.
    • Use the genome browser to analyze the relationships among:
    • pre-mRNA
    • 5' capping
    • 3' polyadenylation
    • splicing
    • mRNA
    Module 4
    • Identify splice donor and acceptor sites that are best supported by RNA-Seq data and TopHat splice junction predictions.
    • Utilize the canonical splice donor and splice acceptor sequences to identify intron-exon boundaries.
    Module 5
    • Determine the codons for specific amino acids and identify reading frames by examining the Base Position track in the genome browser.
    • Assemble exons to maintain the open reading frame (ORF) for a given gene.
    • Define the phases of the splice donor and acceptor sites and describe how they impact the maintenance of the ORF.
    • Identify the start and stop codons of an assembled ORF.
    Module 6
    • Demonstrate how alternative splicing of a gene can lead to different mRNAs.
    • Show how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.
  • The mechanisms regulating the cellular respiration system.

    Discovering Cellular Respiration with Computational Modeling and Simulations

    Learning Objectives
    Students will be able to:
    • Describe how changes in cellular homeostasis affect metabolic intermediates.
    • Perturb and interpret a simulation of cellular respiration.
    • Describe cellular mechanisms regulating cellular respiration.
    • Describe how glucose, oxygen, and coenzymes affect cellular respiration.
    • Describe the interconnectedness of cellular respiration.
    • Identify and describe the inputs and outputs of cellular respiration, glycolysis, pyruvate processing, citric acid cycle, and the electron transport chain.
    • Describe how different energy sources are used in cellular respiration.
    • Trace carbon through cellular respiration from glucose to carbon dioxide.
  • Mechanisms regulating the lac operon system

    Discovering Prokaryotic Gene Regulation by Building and Investigating a Computational Model of the lac Operon

    Learning Objectives
    Students will be able to:
    • model how the components of the lac operon contribute to gene regulation and expression.
    • generate and test predictions using computational modeling and simulations.
    • interpret and record graphs displaying simulation results.
    • relate simulation results to cellular events.
    • describe how changes in environmental glucose and lactose levels impact regulation of the lac operon.
    • predict, test, and explain how mutations in specific elements in the lac operon affect their protein product and other elements within the operon.
  • A pair of homologous chromosomes.

    Meiosis: A Play in Three Acts, Starring DNA Sequence

    Learning Objectives
    • Students will be able to identify sister chromatids and homologous chromosomes at different stages of meiosis.
    • Students will be able to identify haploid and diploid cells, whether or not the chromosomes are replicated.
    • Students will be able to explain why homologous chromosomes must pair during meiosis.
    • Students will be able to relate DNA sequence similarity to chromosomal structures.
    • Students will be able to identify crossing over as the key to proper pairing of homologous chromosomes during meiosis.
    • Students will be able to predict the outcomes of meiosis for a particular individual or cell.
  • Students engaged in building the PCR model

    A Close-Up Look at PCR

    Learning Objectives
    At the end of this lesson students will be able to...
    • Describe the role of a primer in PCR
    • Predict sequence and length of PCR product based on primer sequences
    • Recognize that primers are incorporated into the final PCR products and explain why
    • Identify covalent and hydrogen bonds formed and broken during PCR
    • Predict the structure of PCR products after each cycle of the reaction
    • Explain why amplification proceeds exponentially