Skip to main content

You are here

Filters

Search found 7 items

Search

  • Figure 2. ICB-Students come to class prepared to discuss the text
  • How Silly Putty® is like bone

    What do Bone and Silly Putty® have in Common?: A Lesson on Bone Viscoelasticity

    Learning Objectives
    • Students will be able to explain how the anatomical structure of long bones relates to their function.
    • Students will be able to define viscoelasticity, hysteresis, anisotropy, stiffness, strength, ductility, and toughness.
    • Students will be able to identify the elastic and plastic regions of a stress-strain curve. They will be able to correlate each phase of the stress-strain curve with physical changes to bone.
    • Students will be able to predict how a bone would respond to changes in the magnitude of an applied force, and to variations in the speed or angle at which a force is applied.
    • Students will be able to determine the reason(s) why bone injuries occur more frequently during athletic events than during normal everyday use.
  • A photo of grizzly bears fishing in the McNeil Falls in Alaska, taken using BearCam by Lawrence Griffing.

    Authentic Ecological Inquiries Using BearCam Archives

    Learning Objectives
    Students will be able to:
    • conduct an authentic ecological inquiry including
      • generate a testable hypothesis based on observations,
      • design investigation with appropriate sampling selection and variables,
      • collect and analyze data following the design, and
      • interpret results and draw conclusions based on the evidence.
    • write a research report with appropriate structure and style.
    • evaluate the quality of inquiry reports using a rubric.
    • conduct peer review to evaluate and provide feedback to others' work.
    • revise the inquiry report based on peer feedback and self-assessment.
  • A pair of homologous chromosomes.

    Meiosis: A Play in Three Acts, Starring DNA Sequence

    Learning Objectives
    • Students will be able to identify sister chromatids and homologous chromosomes at different stages of meiosis.
    • Students will be able to identify haploid and diploid cells, whether or not the chromosomes are replicated.
    • Students will be able to explain why homologous chromosomes must pair during meiosis.
    • Students will be able to relate DNA sequence similarity to chromosomal structures.
    • Students will be able to identify crossing over as the key to proper pairing of homologous chromosomes during meiosis.
    • Students will be able to predict the outcomes of meiosis for a particular individual or cell.
  • In small groups students brainstorm a list of responses to the prompt and then exchange their lists with another group to circle sex characteristics and star gender characteristics.  The image has whiteboards completed by students.

    Sex and gender: What does it mean to be female or male?

    Learning Objectives
    • Students will be able to distinguish between sex and gender, and apply each term appropriately.
    • Students will be able to compare and contrast levels of sexual determination.
    • Students will be able to critique societal misrepresentations surrounding sex, gender, and gender identity.
  • Student-generated targeting construct from the construct ribbon parts

    Make It Stick: Teaching Gene Targeting with Ribbons and Fasteners

    Learning Objectives
    • Students will be able to design targeting constructs.
    • Students will be able to predict changes to the gene locus after homologous recombination.
    • Students will be able to design experiments to answer a biological question (e.g., "Design an experiment to test if the expression of gene X is necessary for limb development").
  • This is the question when working with pH and pKa. This is original artwork by the author and no copyright is violated.

    Taking the Hassle out of Hasselbalch

    Learning Objectives
    Students will be able to:
    1. Characterize an aqueous environment as acidic or basic.
    2. Explain that pKa is a measure of how easy it is to remove a proton from a molecule.
    3. Predict ionization state of a molecule at a particular pH based on its pKa (qualitative use of the Henderson-Hasselbalch equation).
    4. Calculate the ratio of protonated/unprotonated forms of ionizable groups depending on chemical characteristics and /or environment pH (quantitative use of the Henderson-Hasselbalch equation).
    5. Apply this knowledge in a medical context.