Skip to main content

You are here

Filters

Search found 22 items

Search

  • Phylogeny of HIV1 pol genes sequenced anonymously from viral pools of six victims and the defendant (CCO1-CCO7), plus control samples. Used with permission from Proceedings of the National Academy of Sciences of the United States of America.

    Forensic Phylogenetics: Implementing Tree-thinking in a Court of Law

    Learning Objectives
     
    • Students will be able to infer the topological and temporal relationships expected in an evolutionary tree (phylogeny) of a pathogen in the case of transmission from one host to the next.
    • Students will be able to draw trees representing the transmission events from one host (patient zero) to multiple secondary patients.
  • Students using the Understanding Eukaryotic Genes curriculum to construct a gene model. Students are working as a pair to complete each Module using classroom computers.

    An undergraduate bioinformatics curriculum that teaches eukaryotic gene structure

    Learning Objectives
    Module 1
    • Demonstrate basic skills in using the UCSC Genome Browser to navigate to a genomic region and to control the display settings for different evidence tracks.
    • Explain the relationships among DNA, pre-mRNA, mRNA, and protein.
    Module 2
    • Describe how a primary transcript (pre-mRNA) can be synthesized using a DNA molecule as the template.
    • Explain the importance of the 5' and 3' regions of the gene for initiation and termination of transcription by RNA polymerase II.
    • Identify the beginning and the end of a transcript using the capabilities of the genome browser.
    Module 3
    • Explain how the primary transcript generated by RNA polymerase II is processed to become a mature mRNA, using the sequence signals identified in Module 2.
    • Use the genome browser to analyze the relationships among:
    • pre-mRNA
    • 5' capping
    • 3' polyadenylation
    • splicing
    • mRNA
    Module 4
    • Identify splice donor and acceptor sites that are best supported by RNA-Seq data and TopHat splice junction predictions.
    • Utilize the canonical splice donor and splice acceptor sequences to identify intron-exon boundaries.
    Module 5
    • Determine the codons for specific amino acids and identify reading frames by examining the Base Position track in the genome browser.
    • Assemble exons to maintain the open reading frame (ORF) for a given gene.
    • Define the phases of the splice donor and acceptor sites and describe how they impact the maintenance of the ORF.
    • Identify the start and stop codons of an assembled ORF.
    Module 6
    • Demonstrate how alternative splicing of a gene can lead to different mRNAs.
    • Show how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.
  • Students at Century College use gel electrophoresis to analyze PCR samples in order to detect a group of ampicillin-resistance genes.

    Antibiotic Resistance Genes Detection in Environmental Samples

    Learning Objectives
    After completing this laboratory series, students will be able to:
    • apply the scientific method in formulating a hypothesis, designing a controlled experiment using appropriate molecular biology techniques, and analyzing experimental results;
    • conduct a molecular biology experiment and explain the principles behind methodologies, such as accurate use of micropipettes, PCR (polymerase chain reaction), and gel electrophoresis;
    • determine the presence of antibiotic-resistance genes in environmental samples by analyzing PCR products using gel electrophoresis;
    • explain mechanisms of microbial antibiotic resistance;
    • contribute data to the Antibiotic Resistance Genes Network;
    • define and apply key concepts of antibiotic resistance and gene identification via PCR fragment size.
  • Using phylogenetics to make inferences about historical biogeographic patterns of evolution.

    Building Trees: Introducing evolutionary concepts by exploring Crassulaceae phylogeny and biogeography

    Learning Objectives
    Students will be able to:
    • Estimate phylogenetic trees using diverse data types and phylogenetic models.
    • Correctly make inferences about evolutionary history and relatedness from the tree diagrams obtained.
    • Use selected computer programs for phylogenetic analysis.
    • Use bootstrapping to assess the statistical support for a phylogeny.
    • Use phylogenetic data to construct, compare, and evaluate the role of geologic processes in shaping the historical and current geographic distributions of a group of organisms.
  • Double-stranded, supercoiled yarn. Intertwined, supercoiled, and double-stranded yarn, representing chromosomal template DNA, with a section marked with black stripes to represent the DNA fragment for modeling PCR fundamentals.

    A Kinesthetic Modeling Activity to Teach PCR Fundamentals

    Learning Objectives
    Students will be able to:
    • Draw or model the first three cycles of PCR, including the correct directionality (5’- and 3’-ends) of the primers and single-stranded PCR products.
    • Diagram how single-stranded products from the first cycle of PCR are used as templates for subsequent PCR cycles.
    • Demonstrate which parts of the primers will anneal to the original DNA template and subsequent PCR products.
    • Model and demonstrate when the primer restriction enzyme sites are incorporated into double-stranded PCR products.
    • Calculate the number of desired-length PCR products and long PCR products for each amplification cycle.
    • Demonstrate how the incorporation of primer restriction enzyme sites into PCR products is a useful tool for subsequent cloning of the product into a vector.
  • SNP model by David Eccles (gringer) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY 4.0 (http://creativecommons.org/licenses/by/4.0)], via Wikimedia Commons

    Exploration of the Human Genome by Investigation of Personalized SNPs

    Learning Objectives
    Students successfully completing this lesson will be able to:
    • Effectively use the bioinformatics databases (SNPedia, the UCSC Genome Browser, and NCBI) to explore SNPs of interest within the human genome.
    • Identify three health-related SNPs of personal interest and use the UCSC Genome Browser to define their precise chromosomal locations and determine whether they lie within a gene or are intergenic.
    • Establish a list of all genome-wide association studies correlated with a particular health-related SNP.
    • Predict which model organism would be most appropriate for conducting further research on a human disease.
  • Human karyotype

    Homologous chromosomes? Exploring human sex chromosomes, sex determination and sex reversal using bioinformatics...

    Learning Objectives
    Students successfully completing this lesson will:
    • Practice navigating an online bioinformatics resource and identify evidence relevant to solving investigation questions
    • Contrast the array of genes expected on homologous autosomal chromosomes pairs with the array of genes expected on sex chromosome pairs
    • Use bioinformatics evidence to defend the definition of homologous chromosomes
    • Define chromosomal sex and defend the definition using experimental data
    • Investigate the genetic basis of human chromosomal sex determination
    • Identify at least two genetic mutations can lead to sex reversal
  • Teaching Genetic Linkage and Recombination through Mapping with Molecular Markers

    Learning Objectives
    Students will be able to:
    • Explain how recombination can lead to new combinations of linked alleles.
    • Explain how molecular markers (such as microsatellites) can be used to map the location of genes/loci, including what crosses would be informative and why.
    • Explain how banding patterns on an electrophoresis gel represent the segregation of alleles during meiosis.
    • Predict how recombination frequency between two linked loci affects the genotype frequencies of the products of meiosis compared to loci that are unlinked (or very tightly linked).
    • Analyze data from a cross (phenotypes and/or genotypes) to determine if the cross involves linked genes.
    • Calculate the map distance between linked genes using data from genetic crosses, such as gel electrophoresis banding patterns.
    • Justify conclusions about genetic linkage by describing the information in the data that allows you to determine genes are linked.
  • pClone Red Makes Research Look Easy

    Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Introductory Biology (identifying...

    Learning Objectives
    • Describe how cells can produce proteins at the right time and correct amount.
    • Diagram how a repressor works to reduce transcription.
    • Diagram how an activator works to increase transcription.
    • Identify a new promoter from literature and design a method to clone it and test its function.
    • Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments.
    • Design an experiment to verify a new promoter has been cloned into a destination vector.
    • Design an experiment to measure the strength of a promoter.
    • Analyze data showing reporter protein produced and use the data to assess promoter strength.
    • Define type IIs restriction enzymes.
    • Distinguish between type II and type IIs restriction enzymes.
    • Explain how Golden Gate Assembly (GGA) works.
    • Measure the relative strength of a promoter compared to a standard promoter.
  • DNA

    Why do Some People Inherit a Predisposition to Cancer? A small group activity on cancer genetics

    Learning Objectives
    At the end of this activity, we expect students will be able to:
    1. Use family pedigrees and additional genetic information to determine inheritance patterns for hereditary forms of cancer
    2. Explain why a person with or without cancer can pass on a mutant allele to the next generation and how that impacts probability calculations
    3. Distinguish between proto-oncogenes and tumor suppressor genes
  • Students engaged in building the PCR model

    A Close-Up Look at PCR

    Learning Objectives
    At the end of this lesson students will be able to...
    • Describe the role of a primer in PCR
    • Predict sequence and length of PCR product based on primer sequences
    • Recognize that primers are incorporated into the final PCR products and explain why
    • Identify covalent and hydrogen bonds formed and broken during PCR
    • Predict the structure of PCR products after each cycle of the reaction
    • Explain why amplification proceeds exponentially
  • Bacteria growing on petri dish

    You and Your Oral Microflora: Introducing non-biology majors to their “forgotten organ”

    Learning Objectives
    Students will be able to:
    • Explain both beneficial and detrimental roles of microbes in human health.
    • Compare and contrast DNA replication as it occurs inside a cell versus in a test tube
    • Identify an unknown sequence of DNA by performing a BLAST search
    • Navigate sources of scientific information to assess the accuracy of their experimental techniques
  • Modeling the Research Process: Authentic human physiology research in a large non-majors course

    Learning Objectives
    Students will be able to:
    • Read current scientific literature
    • Formulate testable hypotheses
    • Design an experimental procedure to test their hypothesis
    • Make scientific observations
    • Analyze and interpret data
    • Communicate results visually and orally
  • Ecosystem

    Using Pathway Maps to Link Concepts, Peer Review, Primary Literature Searches and Data Assessment in Large Enrollment...

    Learning Objectives
    • Define basic concepts and terminology of Ecosystem Ecology
    • Link biological processes that affect each other
    • Evaluate whether the link causes a positive, negative, or neutral effect
    • Find primary literature
    • Identify data that correctly supports or refutes an hypothesis
  • Using Place-Based Economically Relevant Organisms to Improve Student Understanding of the Roles of Carbon Dioxide,...

    Learning Objectives
    At the end of this lesson, students will be able to:
    • Describe the roles of light energy and carbon dioxide in photosynthetic organisms.
    • Identify the effect of nutrients on the growth of photosynthetic organisms.
    • Describe global cycles in atmospheric carbon dioxide levels and how they relate to photosynthetic organisms.
  • Using the Cell Engineer/Detective Approach to Explore Cell Structure and Function

    Learning Objectives
    Students will be able to:
    • Identify the major cell organelles
    • List the major functions of the organelles
    • Predict how changes in organelle/cell structure could alter cellular function
    • Explain how overall cellular function is dependent upon organelles/cell structure
    • Relate cell structure to everyday contexts
  • Fully annotated mitochondrial genome of a lichenized fungal species (Cladonia subtenuis).  This represents a visual representation of the final project result of the lesson plan. Students will submit their annotation to NCBI (GenBank) and upon acceptance of their annotation, they typically add this publicly available resource into their resume.

    A CURE-based approach to teaching genomics using mitochondrial genomes

    Learning Objectives
    • Install the appropriate programs such as Putty and WinSCP.
    • Navigate NCBI's website including their different BLAST programs (e.g., blastn, tblastx, blastp and blastx)
    • Use command-line BLAST to identify mitochondrial contigs within a whole genome assembly
    • Filter the desired sequence (using grep) and move the assembled mitochondrial genome onto your own computer (using FTP or SCP)
    • Error-correct contigs (bwa mem, samtools tview), connect and circularize organellar contigs (extending from filtered reads)
    • Transform assembled sequences into annotated genomes
    • Orient to canonical start locations in the mitochondrial genome (cox1)
    • Identify the boundaries of all coding components of the mitochondrial genome using BLAST, including: Protein coding genes (BLASTx and tBLASTX), tRNAs (proprietary programs such as tRNAscan), rRNAs (BLASTn, Chlorobox), ORFs (NCBI's ORFFinder)
    • Deposit annotation onto genome repository (NCBI)
    • Update CV/resume to reflect bioinformatics skills learned in this lesson
  • This collage contains original images taken by the course instructor. The images show a microscopic view of stomata on the underside of a Brassica rapa leaf (A), B. rapa plants in their growth trays (B), a flowering B. rapa plant (C), and different concentrations of foliar protein (D). Photos edited via Microsoft Windows Photo Editor and Phototastic Collage Maker.

    A flexible, multi-week approach to plant biology - How will plants respond to higher levels of CO2?

    Learning Objectives
    Students will be able to:
    • Apply findings from each week's lesson to make predictions and informed hypotheses about the next week's lesson.
    • Keep a detailed laboratory notebook.
    • Write and peer-edit the sections of a scientific paper, and collaboratively write an entire lab report in the form of a scientific research paper.
    • Search for, find, and read scientific research papers.
    • Work together as a team to conduct experiments.
    • Connect findings and ideas from each week's lesson to get a broader understanding of how plants will respond to higher levels of CO2 (e.g., stomatal density, photosynthetic/respiratory rates, foliar protein concentrations, growth, and resource allocation).
    Note: Additional, more specific objectives are included with each of the four lessons (Supporting Files S1-S4)
  • pClone Red Makes Research Look Easy

    Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Genetics (analyzing mutant...

    Learning Objectives
    • Describe how cells can produce proteins at the right time and correct amount. 
    • Diagram a bacterial promoter with −35 and −10 elements and the transcription start site.
    • Describe how mutational analysis can be used to study promoter sequence requirements.
    • Develop a promoter mutation hypothesis and design an experiment to test it.
    • Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments. 
    • Design an experiment to verify a mutated promoter has been cloned into a destination vector. 
    • Design an experiment to measure the strength of a promoter. 
    • Analyze data showing reporter protein produced and use the data to assess promoter strength. 
    • Define type IIs restriction enzymes.
    • Distinguish between type II and type IIs restriction enzymes.
    • Explain how Golden Gate Assembly (GGA) works.
    • Measure the relative strength of a promoter compared to a standard promoter.  
  • DNA

    Using CRISPR-Cas9 to teach the fundamentals of molecular biology and experimental design

    Learning Objectives
    Module 1
    • Generate a testable hypothesis that requires a creative design of reagents based on critical reading of and review of prior research.
    • Demonstrate proficiency in using molecular cloning software to analyze, manipulate and verify DNA sequences.
    • Predict the downstream effect on the mRNA and protein after successfully inserting a DNA repair template into the genome of a cell/organism.
    • Compare and contrast the processes of DNA duplication and PCR.
    • Demonstrate the ability to design primers to amplify a nucleotide sequence.
    • Analyze and evaluate the results of DNA agarose gel electrophoresis.
    Module 2
    • Identify the key features in genomic DNA, specifically those required for CRISPR-Cas9 mediated gene edits.
    • Explain how compatible ends of DNA are used to produce recombinant DNA in a ligation reaction.
    • Explain the chemical principles behind plasmid DNA purification from bacterial cultures.
    • Devise a strategy to screen clones based on antibiotic selection and the mechanism of digestion by DNA endonucleases.
    • Predict and evaluate the results of a diagnostic digest.
    Module 3
    • Explain the chemical principles behind DNA purification using phenol-chloroform extraction and ethanol precipitation.
    • Explain the key differences between DNA duplication and transcription.
    • Demonstrate the ability to perform lab work with sterile technique.
    • Compare and contrast the results of a non-denaturing vs. denaturing agarose gel.
    • Evaluate the results of a denaturing agarose gel.
    Module 4
    • Design and implement an experiment that tests the CRISPR-Cas9 principle.
    • Predict the outcome of a successful in vitro Cas9 digest.
    Presentation of Data Post Lesson
    • Summarize important background information on gene of interest from analysis of primary literature.
    • Produce figures and figure legends that clearly indicate results.
    • Organize and construct a poster that clearly and professionally displays the important aspects of the lesson.
    • Demonstrate understanding of the lesson by presenting a poster to an audience in lay terms, mid-level terms, or at an expert level.
    • Demonstrate understanding of procedures by writing a formal materials and methods paper.
  • Sodium-Potassium pump

    Lights, Camera, Acting Transport! Using role-play to teach membrane transport

    Learning Objectives
    At the end of this activity, students should be able to:
    • Compare and contrast the mechanisms of simple diffusion, facilitated diffusion, and active transport (both primary and secondary).
    • Identify, and provide a rationale for, the mechanism(s) by which various substances cross the plasma membrane.
    • Describe the steps involved in the transport of ions by the Na+/K+ pump, and explain the importance of electrogenic pumps to the generation and maintenance of membrane potentials.
    • Explain the function of electrochemical gradients as potential energy sources specifically used in secondary active transport.
    • Relate each molecule or ion transported by the Na+/glucose cotransporter (SGLT1) to its own concentration or electrochemical gradient, and describe which molecules travel with and against these gradients.
  • “The outcome of the Central Dogma is not always intuitive” Variation in gene size does not necessarily correlate with variation in protein size. Here, two related genes differ in length due to a deletion mutation that removes four nucleotides. Many students do not predict that the smaller gene, after transcription and translation, would produce a larger protein.

    Predicting and classifying effects of insertion and deletion mutations on protein coding regions

    Learning Objectives
    Students will be able to:
    • accurately predict effects of frameshift mutations in protein coding regions
    • conduct statistical analysis to compare expected and observed values
    • become familiar with accessing and using DNA sequence databases and analysis tools