Skip to main content

You are here

Filters

Search found 109 items

Search

  • Image of a writing center

    Visits to the writing center and office hours provide students structured reflection and low-stakes feedback on...

    Learning Objectives
    • Students will be able to write a lab report that contains a descriptive title, complete and concise abstract, substantive and relevant introduction that includes a testable hypothesis, descriptive methods, description and comparison of results of various testable groups, biological explanation of the results that reflect the testable hypothesis, a conclusion that contains societal implications or scientific impact, and references cited in the document.
    • Students will be able to self-identify weaknesses and strengths of their writing.
    • Students will understand how to utilize office hours and the writing center to receive feedback on their lab reports.
  • Plant ecology students surveying vegetation at Red Hills, CA, spring 2012.  From left to right are G.L, F.D, A.M., and R.P.  Photo used with permission from all students.

    Out of Your Seat and on Your Feet! An adaptable course-based research project in plant ecology for advanced students

    Learning Objectives
    Students will:
    • Articulate testable hypotheses. (Lab 8, final presentation/paper, in-class exercises)
    • Analyze data to determine the level of support for articulated hypotheses. (Labs 4-7, final presentation/paper)
    • Identify multiple species of plants in the field quickly and accurately. (Labs 2-3, field trip)
    • Measure environmental variables and sample vegetation in the field. (Labs 2-3, field trip)
    • Analyze soil samples using a variety of low-tech lab techniques. (Open labs after field trip)
    • Use multiple statistical techniques to analyze data for patterns. (Labs 4-8, final presentation/paper)
    • Interpret statistical analyses to distinguish between strong and weak interactions in a biological system. (Labs 4-7, final presentation/paper)
    • Develop and present a conference-style presentation in a public forum. (Lab 8, final presentation/paper)
    • Write a publication-ready research paper communicating findings and displaying data. (Lab 8, final presentation/paper)
  • MA plot of RNA-seq data. An MA plot is a visual summary of gene expression data which identifies genes showing differential expression between two treatments.

    Tackling "Big Data" with Biology Undergrads: A Simple RNA-seq Data Analysis Tutorial Using Galaxy

    Learning Objectives
    • Students will locate and download high-throughput sequence data and genome annotation files from publically available data repositories.
    • Students will use Galaxy to create an automated computational workflow that performs sequence quality assessment, trimming, and mapping of RNA-seq data.
    • Students will analyze and interpret the outputs of RNA-seq analysis programs.
    • Students will identify a group of genes that is differentially expressed between treatment and control samples, and interpret the biological significance of this list of differentially expressed genes.
  • Madhumathi S V (2013) This image is license under a Creative Commons Atrribution-Share Alike 4.0 International.  https://commons.wikimedia.org/wiki/File:Business_ethics.jpg

    Priority Setting in Public Health: A lesson in ethics and hard choices

    Learning Objectives
    At the end of this unit, students will be able to:
    • Define the central distinction between public health and medicine
    • Apply objectives of public health and individual medical care in a particular situation to identify potential areas of conflict in priority setting
    • Apply moral theories of utilitarianism and deontology to a particular situation to identify the course of action proponents of each theory would see as morally justified
    • Identify the range of morally justifiable actions that might be available to a health professional in a particular setting
    • Choose from among a range of possible actions in a particular health situation and articulate the ethical principles that would justify that choice.
  • Fully annotated mitochondrial genome of a lichenized fungal species (Cladonia subtenuis).  This represents a visual representation of the final project result of the lesson plan. Students will submit their annotation to NCBI (GenBank) and upon acceptance of their annotation, they typically add this publicly available resource into their resume.

    A CURE-based approach to teaching genomics using mitochondrial genomes

    Learning Objectives
    • Install the appropriate programs such as Putty and WinSCP.
    • Navigate NCBI's website including their different BLAST programs (e.g., blastn, tblastx, blastp and blastx)
    • Use command-line BLAST to identify mitochondrial contigs within a whole genome assembly
    • Filter the desired sequence (using grep) and move the assembled mitochondrial genome onto your own computer (using FTP or SCP)
    • Error-correct contigs (bwa mem, samtools tview), connect and circularize organellar contigs (extending from filtered reads)
    • Transform assembled sequences into annotated genomes
    • Orient to canonical start locations in the mitochondrial genome (cox1)
    • Identify the boundaries of all coding components of the mitochondrial genome using BLAST, including: Protein coding genes (BLASTx and tBLASTX), tRNAs (proprietary programs such as tRNAscan), rRNAs (BLASTn, Chlorobox), ORFs (NCBI's ORFFinder)
    • Deposit annotation onto genome repository (NCBI)
    • Update CV/resume to reflect bioinformatics skills learned in this lesson
  • Using Undergraduate Molecular Biology Labs to Discover Targets of miRNAs in Humans

    Learning Objectives
    • Use biological databases to generate and compare lists of predicted miR targets, and obtain the mRNA sequence of their selected candidate gene
    • Use bioinformatics tools to design and optimize primer sets for qPCR
  • In small groups students brainstorm a list of responses to the prompt and then exchange their lists with another group to circle sex characteristics and star gender characteristics.  The image has whiteboards completed by students.

    Sex and gender: What does it mean to be female or male?

    Learning Objectives
    • Students will be able to distinguish between sex and gender, and apply each term appropriately.
    • Students will be able to compare and contrast levels of sexual determination.
    • Students will be able to critique societal misrepresentations surrounding sex, gender, and gender identity.
  • Neutrophils in a Danio rerio Embryo. Student-generated picture of a wounded zebrafish embryo that was stained to show the neutrophils (small black dots) that had migrated toward the wound site on the fin.

    Inexpensive Cell Migration Inquiry Lab using Zebrafish

    Learning Objectives
    Students will:
    • formulate a hypothesis and design an experiment with the proper controls.
    • describe the steps involved in the zebrafish wounding assay (treating zebrafish embryos with drugs or control substances, wounding the embryo, staining the embryo, and counting neutrophils near the wound).
    • summarize results into a figure and write a descriptive figure legend.
    • perform appropriate statistical analysis.
    • interpret results in a discussion that draws connections between the cytoskeleton and cell migration.
    • put data into context by appropriately using information from journal articles in the introduction and discussion of a lab report.
  • Train tracks, image author: Mitya Ilyinov

    BioMap Degree Plan: A project to guide students in exploring, defining, and building a plan to achieve career goals

    Learning Objectives
    Students will be able to...
    • Identify their values and interests.
    • Identify careers that align with their values and interests.
    • Identify academic programs and co-curricular experiences that will prepare them for a career.
    • Create the first draft of a BioMap Degree Plan to support achievement of their career goals.
    • Articulate how their undergraduate academic experience will prepare them for their future career.
    • Use professional communication skills
  • Grow the Gradient game board. A student moves game pieces on the game board as they learn how the loop of Henle creates a salt concentration gradient in the medulla.

    Grow the Gradient: An interactive countercurrent multiplier game

    Learning Objectives
    • Students will be able to simulate the movement of water and sodium at each region of the loop of Henle.
    • Students will be able to associate osmosis and active transport with movement of water/solutes at each region of the loop of Henle.
    • Students will be able to model how the descending and ascending limbs of the loop of Henle maintain a concentration gradient within the medulla.
    • Students will be able to predict the effects of altering normal water and salt movement out of the loop of Henle on the salt concentration of the medulla, urine concentration, and urine volume.
    Advanced Learning Objectives for Extensions
    • Students will be able to predict the impact of the length of the loop of Henle on the magnitude of the concentration gradient within the medulla.
    • Students will be able to predict the length of the loop of Henle in organisms from different habitats.
  • Cavities and Tubes in Humans

    The Inside and Outside the Body

    Learning Objectives
    Students will be able to:
    • correctly identify when a substance (e.g. fetus, bacteria, toxins) is inside or outside the body.
    • recognize the point at which a substance transitions from the inside to the outside of the body and vice versa.
    • apply the concept of inside and outside the body to both normal events, such as the movement of oxygen from the alveolus to the blood, and abnormal events, such as the presence of blood in the urine.
  • Hydrozoan polyps on a hermit-crab shell (photo by Tiffany Galush)

    A new approach to course-based research using a hermit crab-hydrozoan symbiosis

    Learning Objectives
    Students will be able to:
    • define different types of symbiotic interactions, with specific examples.
    • summarize and critically evaluate contemporary primary literature relevant to ecological symbioses, in particular that between hermit crabs and Hydractinia spp.
    • articulate a question, based on observations of a natural phenomenon (in this example, the hermit crab-Hydractinia interaction).
    • articulate a testable hypothesis, based on their own observations and read of the literature.
    • design appropriate experimental or observational studies to address their hypotheses.
    • collect and interpret data in light of their hypotheses.
    • problem-solve and troubleshoot issues that arise during their experiment.
    • communicate scientific results, both orally and in written form.
  • A schematic of the relationship between the different types of pasta or beans and the respective gut and environmental bacteria

    The impact of diet and antibiotics on the gut microbiome

    Learning Objectives
    After completing the exercise, students will be able to:
    • Identify several of the nine phyla that contribute to the gut microbiome and name the two predominant ones;
    • Describe how diet impacts the gut microbiome and compare the composition of the gut microbiome between different diets;
    • Describe how antibiotic treatment impacts the gut microbiome and understand how this leads to infection, for example by Clostridium difficile;
    • Trace the response to a change in diet, starting with i) changes in the composition of the microbiome, followed by ii) changes in the bacterial metabolic pathways and the respective excreted metabolic products, resulting in iii) a molecular response in the host intestinal cells, and eventually iv) resulting in human disease;
    • Improve their ability to read scientific literature;
    • Express themselves orally and in writing;
    • Develop team working skill
  • Training future faculty map

    Training future faculty in 30 minutes a week: A modular framework to provide just-in-time professional development to...

    Learning Objectives
    TAs will be able to:
    • design small classroom activities
    • design fair quiz and exam questions
    • use rubrics to grade assignments fairly and in a timely manner
    • offer constructive, actionable feedback on student written work
    • compare and contrast context-specific strategies for dealing with student problems
    • compare and contrast context-specific time management strategies
    • discuss the importance of diversity, evaluate their own implicit biases, and discuss how these could impact their teaching
    • compare and contrast different methods of summarizing teaching experience on job application materials
    • evaluate their teaching in a reflective manner to develop future teaching goals
  • Normal Arabidopsis plants (A) have flat, spatula shaped leaves. asymmetric leaves2 (as2) mutant plants (B) have leaves that are curled under and slightly twisted. asymmetric leaves1(as1) mutant plants (C) have leaves that are curled under and twisted but also have reduced petioles.  In the laboratory activities I present, students analyze the sequence of the as1 and as2 alleles and computationally model the wild-type and mutant proteins. Visualizing the 3-D structure of the proteins helps students understan

    Using computational molecular modeling software to demonstrate how DNA mutations cause phenotypes

    Learning Objectives
    Students successfully completing this lesson will:
    1. Practice basic molecular biology laboratory skills such as DNA isolation, PCR, and gel electrophoresis.
    2. Gather and analyze quantitative and qualitative scientific data and present it in figures.
    3. Use bioinformatics to analyze DNA sequences and obtain protein sequences for molecular modeling.
    4. Make and analyze three-dimensional (3-D) protein models using molecular modeling software.
    5. Write a laboratory report using the collected data to explain how mutations in the DNA cause changes in protein structure/function which lead to mutant phenotypes.
  • Image from http://www.epa.gov/airdata/ad_maps.html

    Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues

    Learning Objectives
    Students will be able to:
    • Describe various parameters of air quality that can negatively impact human health, list priority air pollutants, and interpret the EPA Air Quality Index as it relates to human health.
    • Identify an air quality problem that varies on spatial and/or temporal scales that can be addressed using publicly available U.S. EPA air data.
    • Collect appropriate U.S. EPA Airdata information needed to answer that/those questions, using the U.S. EPA Airdata website data mining tools.
    • Analyze the data as needed to address or answer their question(s).
    • Interpret data and draw conclusions regarding air quality levels and/or impacts on human and public health.
    • Communicate results in the form of a scientific paper.
  • Adult female Daphnia dentifera. Daphnia spp. make a great study system due to their transparent body and their ease of upkeep in a lab.

    Dynamic Daphnia: An inquiry-based research experience in ecology that teaches the scientific process to first-year...

    Learning Objectives
    Students will be able to:
    • Construct written predictions about 1 factor experiments.
    • Interpret simple (2 variables) figures.
    • Construct simple (2 variables) figures from data.
    • Design simple 1 factor experiments with appropriate controls.
    • Demonstrate proper use of standard laboratory items, including a two-stop pipette, stereomicroscope, and laboratory notebook.
    • Calculate means and standard deviations.
    • Given some scaffolding (instructions), select the correct statistical test for a data set, be able to run a t-test, ANOVA, chi-squared test, and linear regression in Microsoft Excel, and be able to correctly interpret their results.
    • Construct and present a scientific poster.
  • Playon Words Title Screen

    Using Gamification to Teach Undergraduate Students about Scientific Writing

    Learning Objectives
    Topics within Playon Words are grouped into “mini-games.” The Learning Objectives for each mini-game are as follows: Sentence Sensei
    • Identify the best sentence variant from a list of options
    • Identify and eliminate needless words
    • Identify where and when to use different types of punctuation marks
    • Identify and correct common grammar mistakes
    Organization Optimizer
    • Organize sentences in a logical order
    • Describe the components of different sections of a scientific paper
    • Identify the section of a scientific paper where a given sentence belongs
    • Eliminate sentences which do not belong in a given writing sample
    Science Officer Training
    • Classify statements as scientific or non-scientific
    • Identify which statements support a particular hypothesis or position
    • Classify provided sentences (e.g. hypotheses vs. predictions, problems vs. experiments, results vs. discussion)
    Reference Referee
    • Compare and contrast different types (e.g. primary literature, review articles, popular literature etc.) and sources (PubMed, Web of Science, Google Scholar etc.) of scientific information
    • Identify locations in texts where citations are needed
    • Identify citations and/or references that are incorrect or missing key information
    • Identify information that does not belong in the reference list (e.g. vendor information)
  • Enzymatic avocado browning is driven by polyphenol oxidase. Mashed avocado pulp is bright green but turns dark brown over the course of two hours at room temperature in the presence of air and salt. This reaction can be accelerated or inhibited by more than 20 different testable reagents, allowing students to explore experimental design.

    The Avocado Lab: An Inquiry-Driven Exploration of an Enzymatic Browning Reaction

    Learning Objectives
    Students will be able to:
    • develop a testable research question and supportive hypothesis regarding the browning of damaged avocado flesh caused by the activity of avocado polyphenol oxidase (aPPO).
    • design and execute a well-controlled experiment to test aPPO hypotheses.
    • evaluate qualitative enzyme activity data.
    • create a figure and legend to present qualitative data that tests multiple hypotheses and variables.
    • search for and correctly cite primary literature to support or refute hypotheses.
    • know the role of reducing reagents, pH, chelators, and temperature in reactions catalyzed by aPPO.
    • explain why the effects of salt and detergent differ for aPPO experiments conducted in situ
    • (in mashed avocado flesh) as compared to in vitro (on purified protein).
    • discuss how substrate and cofactor availability affect aPPO reactions.
    • describe how endogenous subcellular organization restricts aPPO reactions in a healthy avocado.
    • evaluate food handling practices for fruits expressing PPO.
  • Newspapers for a rainy day, filled with reports of the ways that science and society are interwoven. ©Eleanor Vandegrift

    Building student literacy and metacognition through reading science in the news

    Learning Objectives
    For each specific topic (stem cells and cloning, genetically modified organisms, and the human genome and human genetic diseases), students will be able to:
    • describe the underlying biology and explore how scientific reasoning and methods develop this understanding,
    • discuss the types of policy decisions that regulate studies related to biology or its application to human or environmental health,
    • evaluate scientific information to distinguish reliable information from propaganda,
    • explain how scientific controversies can arise when the same scientific questions are approached in different ways,
    • explore why some types of biological issues trigger regulatory decisions that can affect both research that would deepen our understanding of the issue and application of the results to policy decisions,
    • write about scientists who are researching topics related to our course, and
    • read science writing published in popular media sources.
  • Graphic of structured decision making process

    Using Structured Decision Making to Explore Complex Environmental Issues

    Learning Objectives
    Students will be able to:
    1. Describe the process, challenges, and benefits of structured decision making for natural resource management decisions.
    2. Explain and reflect on the role of science and scientists in structured decision making and how those roles interact and compare to the roles of other stakeholders.
    3. Assess scientific evidence for a given management or policy action to resolve an environmental issue.
  • Binding pocket diagram The image suggests that by providing appropriate non-covalent interactions at sites A, B and C, students can create a binding pocket selective for the neurotransmitter molecule serotonin.

    Serotonin in the Pocket: Non-covalent interactions and neurotransmitter binding

    Learning Objectives
    • Students will design a binding site for the neurotransmitter serotonin.
    • Students will be able to determine the effect of a change in molecular orientation on the affinity of the molecule for the binding site.
    • Students will be able to determine the effect of a change in molecular charge on the affinity of the molecule for the binding site.
    • Students will be able to better differentiate between hydrogen bond donors and acceptors.
    • Students can use this knowledge to design binding sites for other metabolites.
  • Memory Helper is an illustration of a made up dietary supplement. Because the supplement is named Memory Helper, and because a picture of a brain is placed on the label, consumers might believe that the supplement is a memory aid. We add the footnote “tested?” to suggest that consumers should take a closer look.

    Bad Science: Exploring the unethical research behind a putative memory supplement

    Learning Objectives
    Students will be able to:
    • create criteria for evaluating information that is touted as scientific.
    • apply those criteria to evaluate the claim that Prevagen® enhances memory.
    • identify the misleading tactics used on the Prevagen® website and in their self-published reporting.
    • decide whether to recommend taking Prevagen® and explain their decisions.
  • Students present their posters to classmates and instructors during a poster fair.

    Discovery Poster Project

    Learning Objectives
    Students will be able to:
    • identify and learn about a scientific research discovery of interest to them using popular press articles and the primary literature
    • find a group on campus doing research that aligns with their interests and communicate with the faculty leader of that group
    • create and present a poster that synthesizes their knowledge of the research beyond the discovery
  • The Flygometer 2.0: The photo is of the Fly Treadmill used in this experiment.

    Fly Exercise: A Simple Experiment to Test the Physiological Effects of Exercise on a Model Organism

    Learning Objectives
    Students will:
    • demonstrate understanding of the concept and details of experimental design.
    • perform an organic lipid extraction to determine total lipid content.
    • quantify enzyme activity, as well as triglyceride, glucose, and glycogen concentrations.
    • organize their collected data into spreadsheets for statistical analyses.
    • interpret the results to gain insight on the varying effects exercise has on an organism's physiology.
    • graphically present their results so that trends can be easily identified.
  • This is the question when working with pH and pKa. This is original artwork by the author and no copyright is violated.

    Taking the Hassle out of Hasselbalch

    Learning Objectives
    Students will be able to:
    1. Characterize an aqueous environment as acidic or basic.
    2. Explain that pKa is a measure of how easy it is to remove a proton from a molecule.
    3. Predict ionization state of a molecule at a particular pH based on its pKa (qualitative use of the Henderson-Hasselbalch equation).
    4. Calculate the ratio of protonated/unprotonated forms of ionizable groups depending on chemical characteristics and /or environment pH (quantitative use of the Henderson-Hasselbalch equation).
    5. Apply this knowledge in a medical context.
  • Evaluating the Quick Fix: Weight Loss Drugs and Cellular Respiration Image File: QuickFixPrimImage.tiff Sources for images: Balance: Public Domain CCO http://www.pd4pic.com/scales-justice-scale-libra-balance-weighbridge.html Mitochondria: https://thumb7.shutterstock.com/thumb_large/1503584/235472731/stock-vector-mitochondrion-235472731.jpg Pills: https://pixabay.com/static/uploads/photo/2014/07/05/15/16/pills-384846_960_720.jpg

    Evaluating the Quick Fix: Weight Loss Drugs and Cellular Respiration

    Learning Objectives
    • Students will be able to explain how the energy from sugars is transformed into ATP via cellular respiration.
    • Students will be able to predict an outcome if there is a perturbation in the cellular respiration pathway.
    • Students will be able to state and evaluate a hypothesis.
    • Students will be able to interpret data from a graph, and use that data to make inferences about the action of a drug.
  • Possible implementations of a short research module

    A Short Laboratory Module to Help Infuse Metacognition during an Introductory Course-based Research Experience

    Learning Objectives
    • Students will be able to evaluate the strengths and weaknesses of data.
    • Students will be able to employ prior knowledge in formulating a biological research question or hypothesis.
    • Students will be able to distinguish a research question from a testable hypothesis.
    • Students will recognize that the following are essential elements in experimental design: identifying gaps in prior knowledge, picking an appropriate approach (ex. experimental tools and controls) for testing a hypothesis, and reproducibility and repeatability.
    • Students will be able to identify appropriate experimental tools, approaches and controls to use in testing a hypothesis.
    • Students will be able to accurately explain why an experimental approach they have selected is a good choice for testing a particular hypothesis.
    • Students will be able to discuss whether experimental outcomes support or fail to support a particular hypothesis, and in the case of the latter, discuss possible reasons why.
  • Genome view obtained from the integrated genome viewer: screenshot of Illumina 75bp single-end reads from two rockfishes Sebastes chrysomelas (top) and S. carnatus (bottom) aligned to a closely related reference genome (S. rubrivinctus).  Reads shown are within the coding region of a gene that was located in an island of genomic divergence between the two species.  The CT mutation within S. carnatus is predicted to cause an amino acid substitution from Lysine to Phenylalanine in a taste receptor gene.  This

    An Introduction to Eukaryotic Genome Analysis in Non-model Species for Undergraduates: A tutorial from the Genome...

    Learning Objectives
    At the end of the activity, students will be able to:
    • Explain the steps involved in genome assembly, annotation, and variant detection to other students and instructors.
    • Create meaningful visualizations of their data using the integrated genome viewer.
    • Use the Linux command line and web-based tools to answer research questions.
    • Produce annotated genomes and call variants from raw sequencing reads in non-model species.
  • Arabidopsis Seedling

    Linking Genotype to Phenotype: The Effect of a Mutation in Gibberellic Acid Production on Plant Germination

    Learning Objectives
    Students will be able to:
    • identify when germination occurs.
    • score germination in the presence and absence of GA to construct graphs of collated class data of wild-type and mutant specimens.
    • identify the genotype of an unknown sample based on the analysis of their graphical data.
    • organize data and perform quantitative data analysis.
    • explain the importance of GA for plant germination.
    • connect the inheritance of a mutation with the observed phenotype.
  • Students use plastic Easter eggs and chocolate pieces to simulate the distribution of HIV in T lymphocytes.

    Infectious Chocolate Joy with a Side of Poissonian Statistics: An activity connecting life science students with subtle...

    Learning Objectives
    • Students will define a Poisson distribution.
    • Students will generate a data set on the probability of a T cell being infected with a virus(es).
    • Students will predict the likelihood of one observing the mean value of viruses occurring.
    • Students will evaluate the outcomes of a random process.
    • Students will hypothesize whether a process is Poissonian and design a test for that hypothesis.
    • Students will collect data and create a histogram from their data.
  • Reprinted by permission from Macmillan Publishers Ltd.

    A Hands-on Introduction to Hidden Markov Models

    Learning Objectives
    • Students will be able to process unannotated genomic data using ab initio gene finders as well as other inputs.
    • Students will be able to defend the proposed gene annotation.
    • Students will reflect on the other uses for HMMs.
  • Dilution and Pipetting Lesson Using Food Dyes

    Learning Objectives
    • Students can use the formula c1v1=c2v2 to calculate dilutions.
    • Students can accurately set and use a micropipette.
    • Students are able to prepare complex solutions such as enzyme reactions.
  • A crossbill feeds on a pinecone

    Coevolution or not? Crossbills, squirrels and pinecones

    Learning Objectives
    1. Define coevolution.
    2. Identify types of evidence that would help determine whether two species are currently in a coevolutionary relationship.
    3. Interpret graphs.
    4. Evaluate evidence about whether two species are coevolving and use evidence to make a scientific argument.
    5. Describe what evidence of a coevolutionary relationship might look like.
    6. Distinguish between coadaptation and coevolution.
  • “Phenology of a Dawn Redwood” – Images collected by students for this lesson pieced together illustrating a Metasequoia glyptostroboides changing color and dropping its leaves in the fall of 2017 on Michigan State University campus.

    Quantifying and Visualizing Campus Tree Phenology

    Learning Objectives
    The Learning Objectives of this lesson span across the entire semester.
    • Observe and collect information on phenological changes in local trees.
    • Become familiar with a database and how to work with large datasets.
    • Analyze and visualize data from the database to test their hypotheses and questions.
    • Develop a research proposal including empirically-driven questions and hypotheses.
    • Synthesize the results of their analysis in the context of plant biodiversity and local environmental conditions.
  • Model skeleton

    Plotting Cranial and Spinal Nerve Pathways in a Human Anatomy Lab

    Learning Objectives
    • Identify and describe the functions of cranial and spinal nerves
    • Identify cranial and spinal nerve origination points and what structures they innervate
    • Trace the routes that cranial and spinal nerves take throughout the body
  • Student-generated targeting construct from the construct ribbon parts

    Make It Stick: Teaching Gene Targeting with Ribbons and Fasteners

    Learning Objectives
    • Students will be able to design targeting constructs.
    • Students will be able to predict changes to the gene locus after homologous recombination.
    • Students will be able to design experiments to answer a biological question (e.g., "Design an experiment to test if the expression of gene X is necessary for limb development").
  • Pipets - photo by Magnus Manske

    Learning to Pipet Correctly by Pipetting Incorrectly?

    Learning Objectives
    • Students will be able to use analytical balances and micropipettes.
    • Students will be able to calculate averages and standard deviations.
    • Students will be able to use t-tests to compare two independent samples.
    • Students will be able to justify accepting or rejecting a null hypothesis based on an interpretation of p-values.
    • Students will learn to use spreadsheet software such as Microsoft Excel and/or Google Sheets
    • Students will be able to explain how pipetting incorrectly leads to errors.
  • 3D Print Model of the Mars Curiosity Rover, printed from NASA 3D Resources (https://nasa3d.arc.nasa.gov/detail/mars-rover-curiosity)

    Exploring the March to Mars Using 3D Print Models

    Learning Objectives
    • Students will be able to describe the major aspects of the Mars Curiosity Rover missions.
    • Students will be able to synthesize information learned from a classroom jigsaw activity on the Mars Curiosity Rover missions.
    • Students will be able to work in teams to plan a future manned mission to Mars.
    • Students will be able to summarize their reports to the class.
  • Aldh1a2 expression in Stage 33 Xenopus laevis embryo: In this lab exercise, students visualize differential gene expression in Xenopus embryos using in situ hybridization.

    Differential Gene Expression during Xenopus laevis Development

    Learning Objectives
    Students will be able to:
    • identify different stages of Xenopus development
    • contrast the strengths and limitations of the Xenopus model organism
    • explain the process and purpose of in situ hybridization
    • compare gene expression patterns from different germ layers or organ domains
    • compare gene expression patterns from different developmental stages
  • Students engaged in building the PCR model

    A Close-Up Look at PCR

    Learning Objectives
    At the end of this lesson students will be able to...
    • Describe the role of a primer in PCR
    • Predict sequence and length of PCR product based on primer sequences
    • Recognize that primers are incorporated into the final PCR products and explain why
    • Identify covalent and hydrogen bonds formed and broken during PCR
    • Predict the structure of PCR products after each cycle of the reaction
    • Explain why amplification proceeds exponentially
  • A three-dimensional model of methionine is superimposed on a phase contrast micrograph of Saccharomyces cerevisiae from a log phase culture.

    Follow the Sulfur: Using Yeast Mutants to Study a Metabolic Pathway

    Learning Objectives
    At the end of this lesson, students will be able to:
    • use spot plating techniques to compare the growth of yeast strains on solid culture media.
    • predict the ability of specific met deletion strains to grow on media containing various sulfur sources.
    • predict how mutations in specific genes will affect the concentrations of metabolites in the pathways involved in methionine biosynthesis.
  • A student playing the Cell Pictionary® portion of this lesson.

    Teaching Cell Structures through Games

    Learning Objectives
    • Students will identify cell structures when viewing an image or diagram of a cell.
    • Students will define the function of eukaryotic organelles and structures, including describing the processes and conditions related to transmembrane transport
    • Students will differentiate between prokaryotic and eukaryotic cells, plant and animal cells according to their structural organization.
  • “The outcome of the Central Dogma is not always intuitive” Variation in gene size does not necessarily correlate with variation in protein size. Here, two related genes differ in length due to a deletion mutation that removes four nucleotides. Many students do not predict that the smaller gene, after transcription and translation, would produce a larger protein.

    Predicting and classifying effects of insertion and deletion mutations on protein coding regions

    Learning Objectives
    Students will be able to:
    • accurately predict effects of frameshift mutations in protein coding regions
    • conduct statistical analysis to compare expected and observed values
    • become familiar with accessing and using DNA sequence databases and analysis tools
  • A A student assists Colorado Parks & Wildlife employees spawning greenback cutthroat trout at the Leadville National Fish Hatchery; B greenback cutthroat trout adults in a hatchery raceway; C tissue samples collected by students to be used for genetic analysis (images taken by S. Love Stowell)

    Cutthroat trout in Colorado: A case study connecting evolution and conservation

    Learning Objectives
    Students will be able to:
    • interpret figures such as maps, phylogenies, STRUCTURE plots, and networks for species delimitation
    • identify sources of uncertainty and disagreement in real data sets
    • propose research to address or remedy uncertainty
    • construct an evidence-based argument for the management of a rare taxon
  • Image of tick from US Department of Agriculture_ARS photo by Scott Bauer

    Mice, Acorns, and Lyme Disease: a Case Study to Teach the Ecology of Emerging Infectious Diseases.

    Learning Objectives
    Students will be able to...
    • outline the life cycle of ticks and explain the transmission cycle of Lyme disease.
    • describe factors that make mice a competent reservoir for Borrelia burgdorferi.
    • analyze and interpret line and bar graphs of data on the effects of changes to ecological communities on the risk of human exposure to Lyme disease.
    • explain how the incidence of Lyme disease is determined by interactions between bacteria, animals, humans and the environment.
    • predict how changes in the ecosystem affect Borrelia burgdorferi transmission.
    • explain how human activities affect biodiversity and the consequences of those actions on disease outbreaks.
  • Bird in flight.  Flight is a mode of locomotion that has co-evolved in several lineages in the animal kingdom.  Here, we see a roseate spoonbill (Platalea ajaja) in flight over Everglades National Park in Florida.  Photo credit: Brian K. Mealey.

    It's a bird! It's a plane! It's biomechanics!

    Learning Objectives
    Students will be able to:
    • identify and define forces that act on an object in flight.
    • understand the definition of Newton’s third law of motion, which states that with every action there is an equal and opposite reaction, and apply this principle to explain pressure differences and lift generation.
    • generate hypotheses about animal flight efficiency based on examining morphology (anatomy).
    • generate hypotheses correlating wing size and performance during flight.
    • apply their understanding of wing designs and wing relationships to total mass.
    • compare flight principles among animals to understand the co-evolution in several animal groups.
  • Students preforming the leaky neuron activity.

    The Leaky Neuron: Understanding synaptic integration using an analogy involving leaky cups

    Learning Objectives
    Students will able to:
    • compare and contrast spatial and temporal summation in terms of the number of presynaptic events and the timing of these events
    • predict the relative contribution to reaching threshold and firing an action potential as a function of distance from the axon hillock
    • predict how the frequency of incoming presynaptic action potentials effects the success of temporal summation of resultant postsynaptic potentials
  • How Silly Putty® is like bone

    What do Bone and Silly Putty® have in Common?: A Lesson on Bone Viscoelasticity

    Learning Objectives
    • Students will be able to explain how the anatomical structure of long bones relates to their function.
    • Students will be able to define viscoelasticity, hysteresis, anisotropy, stiffness, strength, ductility, and toughness.
    • Students will be able to identify the elastic and plastic regions of a stress-strain curve. They will be able to correlate each phase of the stress-strain curve with physical changes to bone.
    • Students will be able to predict how a bone would respond to changes in the magnitude of an applied force, and to variations in the speed or angle at which a force is applied.
    • Students will be able to determine the reason(s) why bone injuries occur more frequently during athletic events than during normal everyday use.
  • Students at Century College use gel electrophoresis to analyze PCR samples in order to detect a group of ampicillin-resistance genes.

    Antibiotic Resistance Genes Detection in Environmental Samples

    Learning Objectives
    After completing this laboratory series, students will be able to:
    • apply the scientific method in formulating a hypothesis, designing a controlled experiment using appropriate molecular biology techniques, and analyzing experimental results;
    • conduct a molecular biology experiment and explain the principles behind methodologies, such as accurate use of micropipettes, PCR (polymerase chain reaction), and gel electrophoresis;
    • determine the presence of antibiotic-resistance genes in environmental samples by analyzing PCR products using gel electrophoresis;
    • explain mechanisms of microbial antibiotic resistance;
    • contribute data to the Antibiotic Resistance Genes Network;
    • define and apply key concepts of antibiotic resistance and gene identification via PCR fragment size.

Pages