Skip to main content

You are here

Filters

Search found 10 items

Introductory Biology

  • This is a representation of what might happen during peer discussion.

    In-class peer grading of daily quizzes increases feedback opportunities

    Learning Objectives
    Each of these objectives are illustrated with a succinct slide presentation or other supplemental material available ahead of class time through the course administration system. Learners found it particularly helpful to have video clips that remind them of mathematical manipulations available (in the above example objective c). Students understand that foundational objectives tend to be the focus of the quiz (objectives a-d) and that others will be given more time to work on together in class (objectives e-g), but I don't specify this exactly to reduce temptation that 'gamers' take a shortcut that would impact their group work negatively later on. However, the assignment for a focused graded group activity is posted as well, so it is clear what we are working towards; if desired individuals could prepare ahead of the class.
  • Students present their posters to classmates and instructors during a poster fair.

    Discovery Poster Project

    Learning Objectives
    Students will be able to:
    • identify and learn about a scientific research discovery of interest to them using popular press articles and the primary literature
    • find a group on campus doing research that aligns with their interests and communicate with the faculty leader of that group
    • create and present a poster that synthesizes their knowledge of the research beyond the discovery
  • Mechanisms regulating the lac operon system

    Discovering Prokaryotic Gene Regulation by Building and Investigating a Computational Model of the lac Operon

    Learning Objectives
    Students will be able to:
    • model how the components of the lac operon contribute to gene regulation and expression.
    • generate and test predictions using computational modeling and simulations.
    • interpret and record graphs displaying simulation results.
    • relate simulation results to cellular events.
    • describe how changes in environmental glucose and lactose levels impact regulation of the lac operon.
    • predict, test, and explain how mutations in specific elements in the lac operon affect their protein product and other elements within the operon.
  • 3D Print Models: A collection of 3D models printed from online repository files.
  • Wikipedia in the Science Classroom. In this primary image, students are sharing their Wikipedia article evaluations and evaluation process with their peers.
  • Peterson MP, Rosvall KA, Choi J-H, Ziegenfus C, Tang H, Colbourne JK, et al. (2013) Testosterone Affects Neural Gene Expression Differently in Male and Female Juncos: A Role for Hormones in Mediating Sexual Dimorphism and Conflict. PLoS ONE 8(4): e61784. doi:10.1371/journal.pone.0061784

    Teaching RNAseq at Undergraduate Institutions: A tutorial and R package from the Genome Consortium for Active Teaching

    Learning Objectives
    • From raw RNAseq data, run a basic analysis culminating in a list of differentially expressed genes.
    • Explain and evaluate statistical tests in RNAseq data. Specifically, given the output of a particular test, students should be able to interpret and explain the result.
    • Use the Linux command line to complete specified objectives in an RNAseq workflow.
    • Generate meaningful visualizations of results from new data in R.
    • (In addition, each chapter of this lesson plan contains more specific learning objectives, such as “Students will demonstrate their ability to map reads to a reference.”)
  • The mechanisms regulating the cellular respiration system.

    Discovering Cellular Respiration with Computational Modeling and Simulations

    Learning Objectives
    Students will be able to:
    • Describe how changes in cellular homeostasis affect metabolic intermediates.
    • Perturb and interpret a simulation of cellular respiration.
    • Describe cellular mechanisms regulating cellular respiration.
    • Describe how glucose, oxygen, and coenzymes affect cellular respiration.
    • Describe the interconnectedness of cellular respiration.
    • Identify and describe the inputs and outputs of cellular respiration, glycolysis, pyruvate processing, citric acid cycle, and the electron transport chain.
    • Describe how different energy sources are used in cellular respiration.
    • Trace carbon through cellular respiration from glucose to carbon dioxide.
  • Two cells stained

    Bad Cell Reception? Using a cell part activity to help students appreciate cell biology, with an improved data plan and...

    Learning Objectives
    • Identify cell parts and explain their function
    • Explain how defects in a cell part can result in human disease
    • Generate thought-provoking questions that expand upon existing knowledge
    • Create a hypothesis and plan an experiment to answer a cell part question
    • Find and reference relevant cell biology journal articles
  • Sodium-Potassium pump

    Lights, Camera, Acting Transport! Using role-play to teach membrane transport

    Learning Objectives
    At the end of this activity, students should be able to:
    • Compare and contrast the mechanisms of simple diffusion, facilitated diffusion, and active transport (both primary and secondary).
    • Identify, and provide a rationale for, the mechanism(s) by which various substances cross the plasma membrane.
    • Describe the steps involved in the transport of ions by the Na+/K+ pump, and explain the importance of electrogenic pumps to the generation and maintenance of membrane potentials.
    • Explain the function of electrochemical gradients as potential energy sources specifically used in secondary active transport.
    • Relate each molecule or ion transported by the Na+/glucose cotransporter (SGLT1) to its own concentration or electrochemical gradient, and describe which molecules travel with and against these gradients.
  • The mechanisms regulating the trp operon system.

    Discovering Prokaryotic Gene Regulation with Simulations of the trp Operon

    Learning Objectives
    Students will be able to:
    • Perturb and interpret simulations of the trp operon.
    • Define how simulation results relate to cellular events.
    • Describe the biological role of the trp operon.
    • Describe cellular mechanisms regulating the trp operon.
    • Explain mechanistically how changes in the extracellular environment affect the trp operon.
    • Define the impact of mutations on trp operon expression and regulation.