Skip to main content

You are here

Filters

Search found 10 items

Introductory Biology

  • Train tracks, image author: Mitya Ilyinov

    BioMap Degree Plan: A project to guide students in exploring, defining, and building a plan to achieve career goals

    Learning Objectives
    Students will be able to...
    • Identify their values and interests.
    • Identify careers that align with their values and interests.
    • Identify academic programs and co-curricular experiences that will prepare them for a career.
    • Create the first draft of a BioMap Degree Plan to support achievement of their career goals.
    • Articulate how their undergraduate academic experience will prepare them for their future career.
    • Use professional communication skills
  • This collage contains original images taken by the course instructor. The images show a microscopic view of stomata on the underside of a Brassica rapa leaf (A), B. rapa plants in their growth trays (B), a flowering B. rapa plant (C), and different concentrations of foliar protein (D). Photos edited via Microsoft Windows Photo Editor and Phototastic Collage Maker.

    A flexible, multi-week approach to plant biology - How will plants respond to higher levels of CO2?

    Learning Objectives
    Students will be able to:
    • Apply findings from each week's lesson to make predictions and informed hypotheses about the next week's lesson.
    • Keep a detailed laboratory notebook.
    • Write and peer-edit the sections of a scientific paper, and collaboratively write an entire lab report in the form of a scientific research paper.
    • Search for, find, and read scientific research papers.
    • Work together as a team to conduct experiments.
    • Connect findings and ideas from each week's lesson to get a broader understanding of how plants will respond to higher levels of CO2 (e.g., stomatal density, photosynthetic/respiratory rates, foliar protein concentrations, growth, and resource allocation).
    Note: Additional, more specific objectives are included with each of the four lessons (Supporting Files S1-S4)
  • Training future faculty map

    Training future faculty in 30 minutes a week: A modular framework to provide just-in-time professional development to...

    Learning Objectives
    TAs will be able to:
    • design small classroom activities
    • design fair quiz and exam questions
    • use rubrics to grade assignments fairly and in a timely manner
    • offer constructive, actionable feedback on student written work
    • compare and contrast context-specific strategies for dealing with student problems
    • compare and contrast context-specific time management strategies
    • discuss the importance of diversity, evaluate their own implicit biases, and discuss how these could impact their teaching
    • compare and contrast different methods of summarizing teaching experience on job application materials
    • evaluate their teaching in a reflective manner to develop future teaching goals
  • Figure 2. ICB-Students come to class prepared to discuss the text
  • pClone Red Makes Research Look Easy

    Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Introductory Biology (identifying...

    Learning Objectives
    • Describe how cells can produce proteins at the right time and correct amount.
    • Diagram how a repressor works to reduce transcription.
    • Diagram how an activator works to increase transcription.
    • Identify a new promoter from literature and design a method to clone it and test its function.
    • Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments.
    • Design an experiment to verify a new promoter has been cloned into a destination vector.
    • Design an experiment to measure the strength of a promoter.
    • Analyze data showing reporter protein produced and use the data to assess promoter strength.
    • Define type IIs restriction enzymes.
    • Distinguish between type II and type IIs restriction enzymes.
    • Explain how Golden Gate Assembly (GGA) works.
    • Measure the relative strength of a promoter compared to a standard promoter.
  • The mechanisms regulating the trp operon system.

    Discovering Prokaryotic Gene Regulation with Simulations of the trp Operon

    Learning Objectives
    Students will be able to:
    • Perturb and interpret simulations of the trp operon.
    • Define how simulation results relate to cellular events.
    • Describe the biological role of the trp operon.
    • Describe cellular mechanisms regulating the trp operon.
    • Explain mechanistically how changes in the extracellular environment affect the trp operon.
    • Define the impact of mutations on trp operon expression and regulation.
  • Students at Century College use gel electrophoresis to analyze PCR samples in order to detect a group of ampicillin-resistance genes.

    Antibiotic Resistance Genes Detection in Environmental Samples

    Learning Objectives
    After completing this laboratory series, students will be able to:
    • apply the scientific method in formulating a hypothesis, designing a controlled experiment using appropriate molecular biology techniques, and analyzing experimental results;
    • conduct a molecular biology experiment and explain the principles behind methodologies, such as accurate use of micropipettes, PCR (polymerase chain reaction), and gel electrophoresis;
    • determine the presence of antibiotic-resistance genes in environmental samples by analyzing PCR products using gel electrophoresis;
    • explain mechanisms of microbial antibiotic resistance;
    • contribute data to the Antibiotic Resistance Genes Network;
    • define and apply key concepts of antibiotic resistance and gene identification via PCR fragment size.
  • Set Up Fly Traps: The photo is of the fly traps after being set up for the experiment

    Gotcha! Which fly trap is the best? An introduction to experimental data collection and analysis

    Learning Objectives
    Students will:
    • design and execute an experiment
    • collect, organize, and summarize data
    • analyze and interpret data and make inferences
  • Cold-blooded animals and chemical kinetics

    Teaching the Biological Relevance of Chemical Kinetics Using Cold-Blooded Animal Biology

    Learning Objectives
    Students will be able to:
    • Predict the effect of reaction temperature on the rate of a chemical reaction
    • Interpret a graph plotted between rate of a chemical reaction and temperature
    • Discuss chemical kinetics utilizing case studies of cold-blooded animals
  • The mechanisms regulating the cellular respiration system.

    Discovering Cellular Respiration with Computational Modeling and Simulations

    Learning Objectives
    Students will be able to:
    • Describe how changes in cellular homeostasis affect metabolic intermediates.
    • Perturb and interpret a simulation of cellular respiration.
    • Describe cellular mechanisms regulating cellular respiration.
    • Describe how glucose, oxygen, and coenzymes affect cellular respiration.
    • Describe the interconnectedness of cellular respiration.
    • Identify and describe the inputs and outputs of cellular respiration, glycolysis, pyruvate processing, citric acid cycle, and the electron transport chain.
    • Describe how different energy sources are used in cellular respiration.
    • Trace carbon through cellular respiration from glucose to carbon dioxide.