Skip to main content

You are here

Filters

Search found 7 items

Introductory Biology

  • photo credit John Friedlein. Author (SRB) helps a student troubleshooting RStudio in the workshop session of class.
  • Format of a typical course meeting
  • Figure 2. ICB-Students come to class prepared to discuss the text
  • Arabidopsis Seedling

    Linking Genotype to Phenotype: The Effect of a Mutation in Gibberellic Acid Production on Plant Germination

    Learning Objectives
    Students will be able to:
    • identify when germination occurs.
    • score germination in the presence and absence of GA to construct graphs of collated class data of wild-type and mutant specimens.
    • identify the genotype of an unknown sample based on the analysis of their graphical data.
    • organize data and perform quantitative data analysis.
    • explain the importance of GA for plant germination.
    • connect the inheritance of a mutation with the observed phenotype.
  • Students at Century College use gel electrophoresis to analyze PCR samples in order to detect a group of ampicillin-resistance genes.

    Antibiotic Resistance Genes Detection in Environmental Samples

    Learning Objectives
    After completing this laboratory series, students will be able to:
    • apply the scientific method in formulating a hypothesis, designing a controlled experiment using appropriate molecular biology techniques, and analyzing experimental results;
    • conduct a molecular biology experiment and explain the principles behind methodologies, such as accurate use of micropipettes, PCR (polymerase chain reaction), and gel electrophoresis;
    • determine the presence of antibiotic-resistance genes in environmental samples by analyzing PCR products using gel electrophoresis;
    • explain mechanisms of microbial antibiotic resistance;
    • contribute data to the Antibiotic Resistance Genes Network;
    • define and apply key concepts of antibiotic resistance and gene identification via PCR fragment size.
  • Evaluating the Quick Fix: Weight Loss Drugs and Cellular Respiration Image File: QuickFixPrimImage.tiff Sources for images: Balance: Public Domain CCO http://www.pd4pic.com/scales-justice-scale-libra-balance-weighbridge.html Mitochondria: https://thumb7.shutterstock.com/thumb_large/1503584/235472731/stock-vector-mitochondrion-235472731.jpg Pills: https://pixabay.com/static/uploads/photo/2014/07/05/15/16/pills-384846_960_720.jpg

    Evaluating the Quick Fix: Weight Loss Drugs and Cellular Respiration

    Learning Objectives
    • Students will be able to explain how the energy from sugars is transformed into ATP via cellular respiration.
    • Students will be able to predict an outcome if there is a perturbation in the cellular respiration pathway.
    • Students will be able to state and evaluate a hypothesis.
    • Students will be able to interpret data from a graph, and use that data to make inferences about the action of a drug.
  • DNA barcoding research in first-year biology curriculum

    CURE-all: Large Scale Implementation of Authentic DNA Barcoding Research into First-Year Biology Curriculum

    Learning Objectives
    Students will be able to: Week 1-4: Fundamentals of Science and Biology
    • List the major processes involved in scientific discovery
    • List the different types of scientific studies and which types can establish causation
    • Design experiments with appropriate controls
    • Create and evaluate phylogenetic trees
    • Define taxonomy and phylogeny and explain their relationship to each other
    • Explain DNA sequence divergence and how it applies to evolutionary relationships and DNA barcoding
    Week 5-6: Ecology
    • Define and measure biodiversity and explain its importance
    • Catalog organisms using the morphospecies concept
    • Geographically map organisms using smartphones and an online mapping program
    • Calculate metrics of species diversity using spreadsheet software
    • Use spreadsheet software to quantify and graph biodiversity at forest edges vs. interiors
    • Write a formal lab report
    Week 7-11: Cellular and Molecular Biology
    • Extract, amplify, visualize and sequence DNA using standard molecular techniques (PCR, gel electrophoresis, Sanger sequencing)
    • Explain how DNA extraction, PCR, gel electrophoresis, and Sanger sequencing work at the molecular level
    Week 12-13: Bioinformatics
    • Trim and assemble raw DNA sequence data
    • Taxonomically identify DNA sequences isolated from unknown organisms using BLAST
    • Visualize sequence data relationships using sequence alignments and gene-based phylogenetic trees
    • Map and report data in a publicly available online database
    • Share data in a formal scientific poster