Filters

# Introductory Biology

• ### In-class peer grading of daily quizzes increases feedback opportunities

Learning Objectives
Each of these objectives are illustrated with a succinct slide presentation or other supplemental material available ahead of class time through the course administration system. Learners found it particularly helpful to have video clips that remind them of mathematical manipulations available (in the above example objective c). Students understand that foundational objectives tend to be the focus of the quiz (objectives a-d) and that others will be given more time to work on together in class (objectives e-g), but I don't specify this exactly to reduce temptation that 'gamers' take a shortcut that would impact their group work negatively later on. However, the assignment for a focused graded group activity is posted as well, so it is clear what we are working towards; if desired individuals could prepare ahead of the class.
• ### Dynamic Daphnia: An inquiry-based research experience in ecology that teaches the scientific process to first-year...

Learning Objectives
Students will be able to:
• Construct written predictions about 1 factor experiments.
• Interpret simple (2 variables) figures.
• Construct simple (2 variables) figures from data.
• Design simple 1 factor experiments with appropriate controls.
• Demonstrate proper use of standard laboratory items, including a two-stop pipette, stereomicroscope, and laboratory notebook.
• Calculate means and standard deviations.
• Given some scaffolding (instructions), select the correct statistical test for a data set, be able to run a t-test, ANOVA, chi-squared test, and linear regression in Microsoft Excel, and be able to correctly interpret their results.
• Construct and present a scientific poster.
• ### Knowing your own: A classroom case study using the scientific method to investigate how birds learn to recognize their...

Learning Objectives
• Students will be able to identify and describe the steps of the scientific method.
• Students will be able to develop hypotheses and predictions.
• Students will be able to construct and interpret bar graphs based on data and predictions.
• Students will be able to draw conclusions from data presented in graphical form.
• ### Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Introductory Biology (identifying...

Learning Objectives
• Describe how cells can produce proteins at the right time and correct amount.
• Diagram how a repressor works to reduce transcription.
• Diagram how an activator works to increase transcription.
• Identify a new promoter from literature and design a method to clone it and test its function.
• Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments.
• Design an experiment to verify a new promoter has been cloned into a destination vector.
• Design an experiment to measure the strength of a promoter.
• Analyze data showing reporter protein produced and use the data to assess promoter strength.
• Define type IIs restriction enzymes.
• Distinguish between type II and type IIs restriction enzymes.
• Explain how Golden Gate Assembly (GGA) works.
• Measure the relative strength of a promoter compared to a standard promoter.
• ### Building Trees: Introducing evolutionary concepts by exploring Crassulaceae phylogeny and biogeography

Learning Objectives
Students will be able to:
• Estimate phylogenetic trees using diverse data types and phylogenetic models.
• Correctly make inferences about evolutionary history and relatedness from the tree diagrams obtained.
• Use selected computer programs for phylogenetic analysis.
• Use bootstrapping to assess the statistical support for a phylogeny.
• Use phylogenetic data to construct, compare, and evaluate the role of geologic processes in shaping the historical and current geographic distributions of a group of organisms.
• ### CURE-all: Large Scale Implementation of Authentic DNA Barcoding Research into First-Year Biology Curriculum

Learning Objectives
Students will be able to: Week 1-4: Fundamentals of Science and Biology
• List the major processes involved in scientific discovery
• List the different types of scientific studies and which types can establish causation
• Design experiments with appropriate controls
• Create and evaluate phylogenetic trees
• Define taxonomy and phylogeny and explain their relationship to each other
• Explain DNA sequence divergence and how it applies to evolutionary relationships and DNA barcoding
Week 5-6: Ecology
• Define and measure biodiversity and explain its importance
• Catalog organisms using the morphospecies concept
• Geographically map organisms using smartphones and an online mapping program
• Calculate metrics of species diversity using spreadsheet software
• Use spreadsheet software to quantify and graph biodiversity at forest edges vs. interiors
• Write a formal lab report
Week 7-11: Cellular and Molecular Biology
• Extract, amplify, visualize and sequence DNA using standard molecular techniques (PCR, gel electrophoresis, Sanger sequencing)
• Explain how DNA extraction, PCR, gel electrophoresis, and Sanger sequencing work at the molecular level
Week 12-13: Bioinformatics
• Trim and assemble raw DNA sequence data
• Taxonomically identify DNA sequences isolated from unknown organisms using BLAST
• Visualize sequence data relationships using sequence alignments and gene-based phylogenetic trees
• Map and report data in a publicly available online database
• Share data in a formal scientific poster
• ### Using Place-Based Economically Relevant Organisms to Improve Student Understanding of the Roles of Carbon Dioxide,...

Learning Objectives
At the end of this lesson, students will be able to:
• Describe the roles of light energy and carbon dioxide in photosynthetic organisms.
• Identify the effect of nutrients on the growth of photosynthetic organisms.
• Describe global cycles in atmospheric carbon dioxide levels and how they relate to photosynthetic organisms.
• ### Bad Cell Reception? Using a cell part activity to help students appreciate cell biology, with an improved data plan and...

Learning Objectives
• Identify cell parts and explain their function
• Explain how defects in a cell part can result in human disease
• Generate thought-provoking questions that expand upon existing knowledge
• Create a hypothesis and plan an experiment to answer a cell part question
• Find and reference relevant cell biology journal articles
• ### Teaching Cell Structures through Games

Learning Objectives
• Students will identify cell structures when viewing an image or diagram of a cell.
• Students will define the function of eukaryotic organelles and structures, including describing the processes and conditions related to transmembrane transport
• Students will differentiate between prokaryotic and eukaryotic cells, plant and animal cells according to their structural organization.
• ### Antibiotic Resistance Genes Detection in Environmental Samples

Learning Objectives
After completing this laboratory series, students will be able to:
• apply the scientific method in formulating a hypothesis, designing a controlled experiment using appropriate molecular biology techniques, and analyzing experimental results;
• conduct a molecular biology experiment and explain the principles behind methodologies, such as accurate use of micropipettes, PCR (polymerase chain reaction), and gel electrophoresis;
• determine the presence of antibiotic-resistance genes in environmental samples by analyzing PCR products using gel electrophoresis;
• explain mechanisms of microbial antibiotic resistance;
• contribute data to the Antibiotic Resistance Genes Network;
• define and apply key concepts of antibiotic resistance and gene identification via PCR fragment size.