Skip to main content

You are here


Search found 11 items

Introductory Biology

  • blind cave fish
  • Train tracks, image author: Mitya Ilyinov

    BioMap Degree Plan: A project to guide students in exploring, defining, and building a plan to achieve career goals

    Learning Objectives
    Students will be able to...
    • Identify their values and interests.
    • Identify careers that align with their values and interests.
    • Identify academic programs and co-curricular experiences that will prepare them for a career.
    • Create the first draft of a BioMap Degree Plan to support achievement of their career goals.
    • Articulate how their undergraduate academic experience will prepare them for their future career.
    • Use professional communication skills
  • An active-learning lesson that targets student understanding of population growth in ecology

    Learning Objectives
    Students will be able to:
    • Calculate and compare population density and abundance.
    • Identify whether a growth curve describes exponential, linear, and/or logistic growth.
    • Describe and calculate a population's growth rate using linear, exponential, and logistic models.
    • Explain the influence of carrying capacity and population density on growth rate.
  • Wikipedia in the Science Classroom. In this primary image, students are sharing their Wikipedia article evaluations and evaluation process with their peers.
  • Figure 2. ICB-Students come to class prepared to discuss the text
  • This is a representation of what might happen during peer discussion.

    In-class peer grading of daily quizzes increases feedback opportunities

    Learning Objectives
    Each of these objectives are illustrated with a succinct slide presentation or other supplemental material available ahead of class time through the course administration system. Learners found it particularly helpful to have video clips that remind them of mathematical manipulations available (in the above example objective c). Students understand that foundational objectives tend to be the focus of the quiz (objectives a-d) and that others will be given more time to work on together in class (objectives e-g), but I don't specify this exactly to reduce temptation that 'gamers' take a shortcut that would impact their group work negatively later on. However, the assignment for a focused graded group activity is posted as well, so it is clear what we are working towards; if desired individuals could prepare ahead of the class.
  • photo credit John Friedlein. Author (SRB) helps a student troubleshooting RStudio in the workshop session of class.
  • DNA barcoding research in first-year biology curriculum

    CURE-all: Large Scale Implementation of Authentic DNA Barcoding Research into First-Year Biology Curriculum

    Learning Objectives
    Students will be able to: Week 1-4: Fundamentals of Science and Biology
    • List the major processes involved in scientific discovery
    • List the different types of scientific studies and which types can establish causation
    • Design experiments with appropriate controls
    • Create and evaluate phylogenetic trees
    • Define taxonomy and phylogeny and explain their relationship to each other
    • Explain DNA sequence divergence and how it applies to evolutionary relationships and DNA barcoding
    Week 5-6: Ecology
    • Define and measure biodiversity and explain its importance
    • Catalog organisms using the morphospecies concept
    • Geographically map organisms using smartphones and an online mapping program
    • Calculate metrics of species diversity using spreadsheet software
    • Use spreadsheet software to quantify and graph biodiversity at forest edges vs. interiors
    • Write a formal lab report
    Week 7-11: Cellular and Molecular Biology
    • Extract, amplify, visualize and sequence DNA using standard molecular techniques (PCR, gel electrophoresis, Sanger sequencing)
    • Explain how DNA extraction, PCR, gel electrophoresis, and Sanger sequencing work at the molecular level
    Week 12-13: Bioinformatics
    • Trim and assemble raw DNA sequence data
    • Taxonomically identify DNA sequences isolated from unknown organisms using BLAST
    • Visualize sequence data relationships using sequence alignments and gene-based phylogenetic trees
    • Map and report data in a publicly available online database
    • Share data in a formal scientific poster
  • Format of a typical course meeting
  • Students at Century College use gel electrophoresis to analyze PCR samples in order to detect a group of ampicillin-resistance genes.

    Antibiotic Resistance Genes Detection in Environmental Samples

    Learning Objectives
    After completing this laboratory series, students will be able to:
    • apply the scientific method in formulating a hypothesis, designing a controlled experiment using appropriate molecular biology techniques, and analyzing experimental results;
    • conduct a molecular biology experiment and explain the principles behind methodologies, such as accurate use of micropipettes, PCR (polymerase chain reaction), and gel electrophoresis;
    • determine the presence of antibiotic-resistance genes in environmental samples by analyzing PCR products using gel electrophoresis;
    • explain mechanisms of microbial antibiotic resistance;
    • contribute data to the Antibiotic Resistance Genes Network;
    • define and apply key concepts of antibiotic resistance and gene identification via PCR fragment size.
  • Evaluating the Quick Fix: Weight Loss Drugs and Cellular Respiration Image File: QuickFixPrimImage.tiff Sources for images: Balance: Public Domain CCO Mitochondria: Pills:

    Evaluating the Quick Fix: Weight Loss Drugs and Cellular Respiration

    Learning Objectives
    • Students will be able to explain how the energy from sugars is transformed into ATP via cellular respiration.
    • Students will be able to predict an outcome if there is a perturbation in the cellular respiration pathway.
    • Students will be able to state and evaluate a hypothesis.
    • Students will be able to interpret data from a graph, and use that data to make inferences about the action of a drug.