Skip to main content

You are here

Filters

Search found 3 items

Introductory Biology

  • A student playing the Cell Pictionary® portion of this lesson.

    Teaching Cell Structures through Games

    Learning Objectives
    • Students will identify cell structures when viewing an image or diagram of a cell.
    • Students will define the function of eukaryotic organelles and structures, including describing the processes and conditions related to transmembrane transport
    • Students will differentiate between prokaryotic and eukaryotic cells, plant and animal cells according to their structural organization.
  • The mechanisms regulating the cellular respiration system.

    Discovering Cellular Respiration with Computational Modeling and Simulations

    Learning Objectives
    Students will be able to:
    • Describe how changes in cellular homeostasis affect metabolic intermediates.
    • Perturb and interpret a simulation of cellular respiration.
    • Describe cellular mechanisms regulating cellular respiration.
    • Describe how glucose, oxygen, and coenzymes affect cellular respiration.
    • Describe the interconnectedness of cellular respiration.
    • Identify and describe the inputs and outputs of cellular respiration, glycolysis, pyruvate processing, citric acid cycle, and the electron transport chain.
    • Describe how different energy sources are used in cellular respiration.
    • Trace carbon through cellular respiration from glucose to carbon dioxide.
  • An active-learning lesson that targets student understanding of population growth in ecology

    Learning Objectives
    Students will be able to:
    • Calculate and compare population density and abundance.
    • Identify whether a growth curve describes exponential, linear, and/or logistic growth.
    • Describe and calculate a population's growth rate using linear, exponential, and logistic models.
    • Explain the influence of carrying capacity and population density on growth rate.