Skip to main content

You are here

Filters

Search found 3 items

Introductory Biology

  • pClone Red Makes Research Look Easy

    Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Introductory Biology (identifying...

    Learning Objectives
    • Describe how cells can produce proteins at the right time and correct amount.
    • Diagram how a repressor works to reduce transcription.
    • Diagram how an activator works to increase transcription.
    • Identify a new promoter from literature and design a method to clone it and test its function.
    • Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments.
    • Design an experiment to verify a new promoter has been cloned into a destination vector.
    • Design an experiment to measure the strength of a promoter.
    • Analyze data showing reporter protein produced and use the data to assess promoter strength.
    • Define type IIs restriction enzymes.
    • Distinguish between type II and type IIs restriction enzymes.
    • Explain how Golden Gate Assembly (GGA) works.
    • Measure the relative strength of a promoter compared to a standard promoter.
  • Students engaged in building the PCR model

    A Close-Up Look at PCR

    Learning Objectives
    At the end of this lesson students will be able to...
    • Describe the role of a primer in PCR
    • Predict sequence and length of PCR product based on primer sequences
    • Recognize that primers are incorporated into the final PCR products and explain why
    • Identify covalent and hydrogen bonds formed and broken during PCR
    • Predict the structure of PCR products after each cycle of the reaction
    • Explain why amplification proceeds exponentially
  • Grow the Gradient game board. A student moves game pieces on the game board as they learn how the loop of Henle creates a salt concentration gradient in the medulla.

    Grow the Gradient: An interactive countercurrent multiplier game

    Learning Objectives
    • Students will be able to simulate the movement of water and sodium at each region of the loop of Henle.
    • Students will be able to associate osmosis and active transport with movement of water/solutes at each region of the loop of Henle.
    • Students will be able to model how the descending and ascending limbs of the loop of Henle maintain a concentration gradient within the medulla.
    • Students will be able to predict the effects of altering normal water and salt movement out of the loop of Henle on the salt concentration of the medulla, urine concentration, and urine volume.
    Advanced Learning Objectives for Extensions
    • Students will be able to predict the impact of the length of the loop of Henle on the magnitude of the concentration gradient within the medulla.
    • Students will be able to predict the length of the loop of Henle in organisms from different habitats.