Skip to main content

You are here

Filters

Search found 5 items

Introductory Biology

  • The mechanisms regulating the cellular respiration system.

    Discovering Cellular Respiration with Computational Modeling and Simulations

    Learning Objectives
    Students will be able to:
    • Describe how changes in cellular homeostasis affect metabolic intermediates.
    • Perturb and interpret a simulation of cellular respiration.
    • Describe cellular mechanisms regulating cellular respiration.
    • Describe how glucose, oxygen, and coenzymes affect cellular respiration.
    • Describe the interconnectedness of cellular respiration.
    • Identify and describe the inputs and outputs of cellular respiration, glycolysis, pyruvate processing, citric acid cycle, and the electron transport chain.
    • Describe how different energy sources are used in cellular respiration.
    • Trace carbon through cellular respiration from glucose to carbon dioxide.
  • Using Place-Based Economically Relevant Organisms to Improve Student Understanding of the Roles of Carbon Dioxide,...

    Learning Objectives
    At the end of this lesson, students will be able to:
    • Describe the roles of light energy and carbon dioxide in photosynthetic organisms.
    • Identify the effect of nutrients on the growth of photosynthetic organisms.
    • Describe global cycles in atmospheric carbon dioxide levels and how they relate to photosynthetic organisms.
  • Grow the Gradient game board. A student moves game pieces on the game board as they learn how the loop of Henle creates a salt concentration gradient in the medulla.

    Grow the Gradient: An interactive countercurrent multiplier game

    Learning Objectives
    • Students will be able to simulate the movement of water and sodium at each region of the loop of Henle.
    • Students will be able to associate osmosis and active transport with movement of water/solutes at each region of the loop of Henle.
    • Students will be able to model how the descending and ascending limbs of the loop of Henle maintain a concentration gradient within the medulla.
    • Students will be able to predict the effects of altering normal water and salt movement out of the loop of Henle on the salt concentration of the medulla, urine concentration, and urine volume.
    Advanced Learning Objectives for Extensions
    • Students will be able to predict the impact of the length of the loop of Henle on the magnitude of the concentration gradient within the medulla.
    • Students will be able to predict the length of the loop of Henle in organisms from different habitats.
  • Students engaged in building the PCR model

    A Close-Up Look at PCR

    Learning Objectives
    At the end of this lesson students will be able to...
    • Describe the role of a primer in PCR
    • Predict sequence and length of PCR product based on primer sequences
    • Recognize that primers are incorporated into the final PCR products and explain why
    • Identify covalent and hydrogen bonds formed and broken during PCR
    • Predict the structure of PCR products after each cycle of the reaction
    • Explain why amplification proceeds exponentially
  • Figure 2. ICB-Students come to class prepared to discuss the text