Skip to main content

You are here


Search found 4 items

Introductory Biology

  • Multiple sequence alignment of homologous cytochrome C protein sequences using Jalview viewer.

    Sequence Similarity: An inquiry based and "under the hood" approach for incorporating molecular sequence...

    Learning Objectives
    At the end of this lesson, students will be able to:
    • Define similarity in a non-biological and biological sense when provided with two strings of letters.
    • Quantify the similarity between two gene/protein sequences.
    • Explain how a substitution matrix is used to quantify similarity.
    • Calculate amino acid similarity scores using a scoring matrix.
    • Demonstrate how to access genomic data (e.g., from NCBI nucleotide and protein databases).
    • Demonstrate how to use bioinformatics tools to analyze genomic data (e.g., BLASTP), explain a simplified BLAST search algorithm including how similarity is used to perform a BLAST search, and how to evaluate the results of a BLAST search.
    • Create a nearest-neighbor distance matrix.
    • Create a multiple sequence alignment using a nearest-neighbor distance matrix and a phylogram based on similarity of amino acid sequences.
    • Use appropriate bioinformatics sequence alignment tools to investigate a biological question.
  • A pair of homologous chromosomes.

    Meiosis: A Play in Three Acts, Starring DNA Sequence

    Learning Objectives
    • Students will be able to identify sister chromatids and homologous chromosomes at different stages of meiosis.
    • Students will be able to identify haploid and diploid cells, whether or not the chromosomes are replicated.
    • Students will be able to explain why homologous chromosomes must pair during meiosis.
    • Students will be able to relate DNA sequence similarity to chromosomal structures.
    • Students will be able to identify crossing over as the key to proper pairing of homologous chromosomes during meiosis.
    • Students will be able to predict the outcomes of meiosis for a particular individual or cell.
  • pClone Red Makes Research Look Easy

    Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Introductory Biology (identifying...

    Learning Objectives
    • Describe how cells can produce proteins at the right time and correct amount.
    • Diagram how a repressor works to reduce transcription.
    • Diagram how an activator works to increase transcription.
    • Identify a new promoter from literature and design a method to clone it and test its function.
    • Successfully and safely manipulate DNA and Escherichia coli for ligation and transformation experiments.
    • Design an experiment to verify a new promoter has been cloned into a destination vector.
    • Design an experiment to measure the strength of a promoter.
    • Analyze data showing reporter protein produced and use the data to assess promoter strength.
    • Define type IIs restriction enzymes.
    • Distinguish between type II and type IIs restriction enzymes.
    • Explain how Golden Gate Assembly (GGA) works.
    • Measure the relative strength of a promoter compared to a standard promoter.
  • Students present their posters to classmates and instructors during a poster fair.

    Discovery Poster Project

    Learning Objectives
    Students will be able to:
    • identify and learn about a scientific research discovery of interest to them using popular press articles and the primary literature
    • find a group on campus doing research that aligns with their interests and communicate with the faculty leader of that group
    • create and present a poster that synthesizes their knowledge of the research beyond the discovery