Skip to main content

You are here

Filters

Search found 3 items

Introductory Biology

  • “Quantifying variation in biodiversity” Groundhogs (Marmota monax) with conspicuous variation awaiting measurements.

    Teaching Biodiversity with Museum Specimens in an Inquiry-Based Lab

    Learning Objectives
    Students completing this lab module will:
    • Learn how to appropriately handle and measure museum specimens.
    • Develop the necessary statistical skills to analyze museum specimen data.
    • Become familiar with how to search an online museum database and integrate supplemental data with their own dataset.
    • Strengthen scientific communication skills by presenting research to their peers.
    • Demonstrate ability to investigate scientific questions and address obstacles that occur during data collection and integration.
    • Increase proficiency in managing and using large datasets for scientific research.
    • Make connections between natural history knowledge and morphology of organisms in developing and testing hypotheses.
  • Using Place-Based Economically Relevant Organisms to Improve Student Understanding of the Roles of Carbon Dioxide,...

    Learning Objectives
    At the end of this lesson, students will be able to:
    • Describe the roles of light energy and carbon dioxide in photosynthetic organisms.
    • Identify the effect of nutrients on the growth of photosynthetic organisms.
    • Describe global cycles in atmospheric carbon dioxide levels and how they relate to photosynthetic organisms.
  • Image from http://www.epa.gov/airdata/ad_maps.html

    Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues

    Learning Objectives
    Students will be able to:
    • Describe various parameters of air quality that can negatively impact human health, list priority air pollutants, and interpret the EPA Air Quality Index as it relates to human health.
    • Identify an air quality problem that varies on spatial and/or temporal scales that can be addressed using publicly available U.S. EPA air data.
    • Collect appropriate U.S. EPA Airdata information needed to answer that/those questions, using the U.S. EPA Airdata website data mining tools.
    • Analyze the data as needed to address or answer their question(s).
    • Interpret data and draw conclusions regarding air quality levels and/or impacts on human and public health.
    • Communicate results in the form of a scientific paper.