Skip to main content

You are here

Filters

Bioinformatics

  • Fully annotated mitochondrial genome of a lichenized fungal species (Cladonia subtenuis).  This represents a visual representation of the final project result of the lesson plan. Students will submit their annotation to NCBI (GenBank) and upon acceptance of their annotation, they typically add this publicly available resource into their resume.

    A CURE-based approach to teaching genomics using mitochondrial genomes

    Learning Objectives
    • Install the appropriate programs such as Putty and WinSCP.
    • Navigate NCBI's website including their different BLAST programs (e.g., blastn, tblastx, blastp and blastx)
    • Use command-line BLAST to identify mitochondrial contigs within a whole genome assembly
    • Filter the desired sequence (using grep) and move the assembled mitochondrial genome onto your own computer (using FTP or SCP)
    • Error-correct contigs (bwa mem, samtools tview), connect and circularize organellar contigs (extending from filtered reads)
    • Transform assembled sequences into annotated genomes
    • Orient to canonical start locations in the mitochondrial genome (cox1)
    • Identify the boundaries of all coding components of the mitochondrial genome using BLAST, including: Protein coding genes (BLASTx and tBLASTX), tRNAs (proprietary programs such as tRNAscan), rRNAs (BLASTn, Chlorobox), ORFs (NCBI's ORFFinder)
    • Deposit annotation onto genome repository (NCBI)
    • Update CV/resume to reflect bioinformatics skills learned in this lesson
  • Using Undergraduate Molecular Biology Labs to Discover Targets of miRNAs in Humans

    Learning Objectives
    • Use biological databases to generate and compare lists of predicted miR targets, and obtain the mRNA sequence of their selected candidate gene
    • Use bioinformatics tools to design and optimize primer sets for qPCR
  • Using QIIME to Interpret Environmental Microbial Communities in an Upper Level Metagenomics Course

    Learning Objectives
    Students will be able to:
    • list and perform the steps of sequence processing and taxonomic inference.
    • interpret microbial community diversity from metagenomic sequence datasets.
    • compare microbial diversity within and between samples or treatments.