Skip to main content

You are here

Filters

Search found 5 items

Bioinformatics

  • SNP model by David Eccles (gringer) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY 4.0 (http://creativecommons.org/licenses/by/4.0)], via Wikimedia Commons

    Exploration of the Human Genome by Investigation of Personalized SNPs

    Learning Objectives
    Students successfully completing this lesson will be able to:
    • Effectively use the bioinformatics databases (SNPedia, the UCSC Genome Browser, and NCBI) to explore SNPs of interest within the human genome.
    • Identify three health-related SNPs of personal interest and use the UCSC Genome Browser to define their precise chromosomal locations and determine whether they lie within a gene or are intergenic.
    • Establish a list of all genome-wide association studies correlated with a particular health-related SNP.
    • Predict which model organism would be most appropriate for conducting further research on a human disease.
  • DNA barcoding research in first-year biology curriculum

    CURE-all: Large Scale Implementation of Authentic DNA Barcoding Research into First-Year Biology Curriculum

    Learning Objectives
    Students will be able to: Week 1-4: Fundamentals of Science and Biology
    • List the major processes involved in scientific discovery
    • List the different types of scientific studies and which types can establish causation
    • Design experiments with appropriate controls
    • Create and evaluate phylogenetic trees
    • Define taxonomy and phylogeny and explain their relationship to each other
    • Explain DNA sequence divergence and how it applies to evolutionary relationships and DNA barcoding
    Week 5-6: Ecology
    • Define and measure biodiversity and explain its importance
    • Catalog organisms using the morphospecies concept
    • Geographically map organisms using smartphones and an online mapping program
    • Calculate metrics of species diversity using spreadsheet software
    • Use spreadsheet software to quantify and graph biodiversity at forest edges vs. interiors
    • Write a formal lab report
    Week 7-11: Cellular and Molecular Biology
    • Extract, amplify, visualize and sequence DNA using standard molecular techniques (PCR, gel electrophoresis, Sanger sequencing)
    • Explain how DNA extraction, PCR, gel electrophoresis, and Sanger sequencing work at the molecular level
    Week 12-13: Bioinformatics
    • Trim and assemble raw DNA sequence data
    • Taxonomically identify DNA sequences isolated from unknown organisms using BLAST
    • Visualize sequence data relationships using sequence alignments and gene-based phylogenetic trees
    • Map and report data in a publicly available online database
    • Share data in a formal scientific poster
  • MA plot of RNA-seq data. An MA plot is a visual summary of gene expression data which identifies genes showing differential expression between two treatments.

    Tackling "Big Data" with Biology Undergrads: A Simple RNA-seq Data Analysis Tutorial Using Galaxy

    Learning Objectives
    • Students will locate and download high-throughput sequence data and genome annotation files from publically available data repositories.
    • Students will use Galaxy to create an automated computational workflow that performs sequence quality assessment, trimming, and mapping of RNA-seq data.
    • Students will analyze and interpret the outputs of RNA-seq analysis programs.
    • Students will identify a group of genes that is differentially expressed between treatment and control samples, and interpret the biological significance of this list of differentially expressed genes.
  • Students using the Understanding Eukaryotic Genes curriculum to construct a gene model. Students are working as a pair to complete each Module using classroom computers.

    An undergraduate bioinformatics curriculum that teaches eukaryotic gene structure

    Learning Objectives
    Module 1
    • Demonstrate basic skills in using the UCSC Genome Browser to navigate to a genomic region and to control the display settings for different evidence tracks.
    • Explain the relationships among DNA, pre-mRNA, mRNA, and protein.
    Module 2
    • Describe how a primary transcript (pre-mRNA) can be synthesized using a DNA molecule as the template.
    • Explain the importance of the 5' and 3' regions of the gene for initiation and termination of transcription by RNA polymerase II.
    • Identify the beginning and the end of a transcript using the capabilities of the genome browser.
    Module 3
    • Explain how the primary transcript generated by RNA polymerase II is processed to become a mature mRNA, using the sequence signals identified in Module 2.
    • Use the genome browser to analyze the relationships among:
    • pre-mRNA
    • 5' capping
    • 3' polyadenylation
    • splicing
    • mRNA
    Module 4
    • Identify splice donor and acceptor sites that are best supported by RNA-Seq data and TopHat splice junction predictions.
    • Utilize the canonical splice donor and splice acceptor sequences to identify intron-exon boundaries.
    Module 5
    • Determine the codons for specific amino acids and identify reading frames by examining the Base Position track in the genome browser.
    • Assemble exons to maintain the open reading frame (ORF) for a given gene.
    • Define the phases of the splice donor and acceptor sites and describe how they impact the maintenance of the ORF.
    • Identify the start and stop codons of an assembled ORF.
    Module 6
    • Demonstrate how alternative splicing of a gene can lead to different mRNAs.
    • Show how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.
  • Genome view obtained from the integrated genome viewer: screenshot of Illumina 75bp single-end reads from two rockfishes Sebastes chrysomelas (top) and S. carnatus (bottom) aligned to a closely related reference genome (S. rubrivinctus).  Reads shown are within the coding region of a gene that was located in an island of genomic divergence between the two species.  The CT mutation within S. carnatus is predicted to cause an amino acid substitution from Lysine to Phenylalanine in a taste receptor gene.  This

    An Introduction to Eukaryotic Genome Analysis in Non-model Species for Undergraduates: A tutorial from the Genome...

    Learning Objectives
    At the end of the activity, students will be able to:
    • Explain the steps involved in genome assembly, annotation, and variant detection to other students and instructors.
    • Create meaningful visualizations of their data using the integrated genome viewer.
    • Use the Linux command line and web-based tools to answer research questions.
    • Produce annotated genomes and call variants from raw sequencing reads in non-model species.