Skip to main content

You are here

Filters

Search found 6 items

Biochemistry And Molecular Biology

  • Abelson kinase signaling network. The image shows many connections between genes and illustrates that signaling molecules and pathways function within networks. It emphasizes the indispensability of computational tools in understanding the molecular functioning of cells. The image was generated with Cytoscape from publicly accessible protein-protein interactions databases.

    Investigating Cell Signaling with Gene Expression Datasets

    Learning Objectives
    Students will be able to:
    • Explain the hierarchical organization of signal transduction pathways.
    • Explain the role of enzymes in signal propagation and amplification.
    • Recognize the centrality of signaling pathways in cellular processes, such as metabolism, cell division, or cell motility.
    • Rationalize the etiologic basis of disease in terms of deranged signaling pathways.
    • Use software to analyze and interpret gene expression data.
    • Use an appropriate statistical method for hypotheses testing.
    • Produce reports that are written in scientific style.
  • Structure of protein ADA2

    Understanding Protein Domains: A Modular Approach

    Learning Objectives
    • Students will be able to compare protein sequences and identify conserved regions and putative domains.
    • Students will be able to obtain, examine, and compare structural models of protein domains.
    • Students will be able to interpret data on protein interactions (in vitro pull-down and in vitro and in vivo functional assays)
    • Students will be able to propose experiments to test protein interactions.
  • Using QIIME to Interpret Environmental Microbial Communities in an Upper Level Metagenomics Course

    Learning Objectives
    Students will be able to:
    • list and perform the steps of sequence processing and taxonomic inference.
    • interpret microbial community diversity from metagenomic sequence datasets.
    • compare microbial diversity within and between samples or treatments.
  • Multiple sequence alignment of homologous cytochrome C protein sequences using Jalview viewer.

    Sequence Similarity: An inquiry based and "under the hood" approach for incorporating molecular sequence...

    Learning Objectives
    At the end of this lesson, students will be able to:
    • Define similarity in a non-biological and biological sense when provided with two strings of letters.
    • Quantify the similarity between two gene/protein sequences.
    • Explain how a substitution matrix is used to quantify similarity.
    • Calculate amino acid similarity scores using a scoring matrix.
    • Demonstrate how to access genomic data (e.g., from NCBI nucleotide and protein databases).
    • Demonstrate how to use bioinformatics tools to analyze genomic data (e.g., BLASTP), explain a simplified BLAST search algorithm including how similarity is used to perform a BLAST search, and how to evaluate the results of a BLAST search.
    • Create a nearest-neighbor distance matrix.
    • Create a multiple sequence alignment using a nearest-neighbor distance matrix and a phylogram based on similarity of amino acid sequences.
    • Use appropriate bioinformatics sequence alignment tools to investigate a biological question.
  • Students using the Understanding Eukaryotic Genes curriculum to construct a gene model. Students are working as a pair to complete each Module using classroom computers.

    An undergraduate bioinformatics curriculum that teaches eukaryotic gene structure

    Learning Objectives
    Module 1
    • Demonstrate basic skills in using the UCSC Genome Browser to navigate to a genomic region and to control the display settings for different evidence tracks.
    • Explain the relationships among DNA, pre-mRNA, mRNA, and protein.
    Module 2
    • Describe how a primary transcript (pre-mRNA) can be synthesized using a DNA molecule as the template.
    • Explain the importance of the 5' and 3' regions of the gene for initiation and termination of transcription by RNA polymerase II.
    • Identify the beginning and the end of a transcript using the capabilities of the genome browser.
    Module 3
    • Explain how the primary transcript generated by RNA polymerase II is processed to become a mature mRNA, using the sequence signals identified in Module 2.
    • Use the genome browser to analyze the relationships among:
    • pre-mRNA
    • 5' capping
    • 3' polyadenylation
    • splicing
    • mRNA
    Module 4
    • Identify splice donor and acceptor sites that are best supported by RNA-Seq data and TopHat splice junction predictions.
    • Utilize the canonical splice donor and splice acceptor sequences to identify intron-exon boundaries.
    Module 5
    • Determine the codons for specific amino acids and identify reading frames by examining the Base Position track in the genome browser.
    • Assemble exons to maintain the open reading frame (ORF) for a given gene.
    • Define the phases of the splice donor and acceptor sites and describe how they impact the maintenance of the ORF.
    • Identify the start and stop codons of an assembled ORF.
    Module 6
    • Demonstrate how alternative splicing of a gene can lead to different mRNAs.
    • Show how alternative splicing can lead to the production of different polypeptides and result in drastic changes in phenotype.
  • A three-dimensional model of methionine is superimposed on a phase contrast micrograph of Saccharomyces cerevisiae from a log phase culture.

    Follow the Sulfur: Using Yeast Mutants to Study a Metabolic Pathway

    Learning Objectives
    At the end of this lesson, students will be able to:
    • use spot plating techniques to compare the growth of yeast strains on solid culture media.
    • predict the ability of specific met deletion strains to grow on media containing various sulfur sources.
    • predict how mutations in specific genes will affect the concentrations of metabolites in the pathways involved in methionine biosynthesis.