Skip to main content

You are here

Filters

Search found 2 items

Biochemistry And Molecular Biology

  • A three-dimensional model of methionine is superimposed on a phase contrast micrograph of Saccharomyces cerevisiae from a log phase culture.

    Follow the Sulfur: Using Yeast Mutants to Study a Metabolic Pathway

    Learning Objectives
    At the end of this lesson, students will be able to:
    • use spot plating techniques to compare the growth of yeast strains on solid culture media.
    • predict the ability of specific met deletion strains to grow on media containing various sulfur sources.
    • predict how mutations in specific genes will affect the concentrations of metabolites in the pathways involved in methionine biosynthesis.
  • Sodium-Potassium pump

    Lights, Camera, Acting Transport! Using role-play to teach membrane transport

    Learning Objectives
    At the end of this activity, students should be able to:
    • Compare and contrast the mechanisms of simple diffusion, facilitated diffusion, and active transport (both primary and secondary).
    • Identify, and provide a rationale for, the mechanism(s) by which various substances cross the plasma membrane.
    • Describe the steps involved in the transport of ions by the Na+/K+ pump, and explain the importance of electrogenic pumps to the generation and maintenance of membrane potentials.
    • Explain the function of electrochemical gradients as potential energy sources specifically used in secondary active transport.
    • Relate each molecule or ion transported by the Na+/glucose cotransporter (SGLT1) to its own concentration or electrochemical gradient, and describe which molecules travel with and against these gradients.