Skip to main content

You are here

Filters

Search found 7 items

Anatomy Physiology

  • Bird in flight.  Flight is a mode of locomotion that has co-evolved in several lineages in the animal kingdom.  Here, we see a roseate spoonbill (Platalea ajaja) in flight over Everglades National Park in Florida.  Photo credit: Brian K. Mealey.

    It's a bird! It's a plane! It's biomechanics!

    Learning Objectives
    Students will be able to:
    • identify and define forces that act on an object in flight.
    • understand the definition of Newton’s third law of motion, which states that with every action there is an equal and opposite reaction, and apply this principle to explain pressure differences and lift generation.
    • generate hypotheses about animal flight efficiency based on examining morphology (anatomy).
    • generate hypotheses correlating wing size and performance during flight.
    • apply their understanding of wing designs and wing relationships to total mass.
    • compare flight principles among animals to understand the co-evolution in several animal groups.
  • Images of students participating in the SIDE activity

    Using a Sequential Interpretation of Data in Envelopes (SIDE) approach to identify a mystery TRP channel

    Learning Objectives
    • Students will be able to analyze data from multiple experimental methodologies to determine the identity of their "mystery" TRP channel.
    • Students will be able to interpret the results of individual experiments and from multiple experiments simultaneously to identify their "mystery" TRP channel.
    • Students will be able to evaluate the advantages and limitations of experimental methodologies presented in this lesson.
  • ACTN3 from https://upload.wikimedia.org/wikipedia/commons/3/33/Protein_ACTN3_PDB_1tjt.png

    The Science Behind the ACTN3 Polymorphism

    Learning Objectives
    This article accompanies the lesson "The ACTN3 Polymorphism: Applications in Genetics and Physiology Teaching Laboratories." Learning objectives for the lesson include:
    1. Test hypotheses related to the role of ACTN3 in skeletal muscle function.
    2. Explain how polymorphic variants of the ACTN3 gene affect protein structure and function.
    3. List and explain the differences between fast twitch and slow twitch muscle fibers.
    4. List and explain possible roles of the ACTN3 protein in skeletal muscle function.
    5. Find and analyze relevant scientific publications about the relationship between ACTN3 genotype and muscle function.
    6. Formulate hypotheses related to the relationship between ACTN3 genotype and skeletal muscle function.
    7. Design experiments to test hypotheses about the role of ACTN3 in skeletal muscle function.
    8. Statistically analyze experimental results using relevant software.
    9. Present experimental results in writing.
  • ACTN3 from https://upload.wikimedia.org/wikipedia/commons/3/33/Protein_ACTN3_PDB_1tjt.png

    The ACTN3 Polymorphism: Applications in Genetics and Physiology Teaching Laboratories

    Learning Objectives
    1. Test hypotheses related to the role of ACTN3 in skeletal muscle function.
    2. Explain how polymorphic variants of the ACTN3 gene affect protein structure and function.
    3. List and explain the differences between fast twitch and slow twitch muscle fibers.
    4. List and explain possible roles of the ACTN3 protein in skeletal muscle function.
    5. Find and analyze relevant scientific publications about the relationship between ACTN3 genotype and muscle function.
    6. Formulate hypotheses related to the relationship between ACTN3 genotype and skeletal muscle function.
    7. Design experiments to test hypotheses about the role of ACTN3 in skeletal muscle function.
    8. Statistically analyze experimental results using relevant software.
    9. Present experimental results in writing.
  • In small groups students brainstorm a list of responses to the prompt and then exchange their lists with another group to circle sex characteristics and star gender characteristics.  The image has whiteboards completed by students.

    Sex and gender: What does it mean to be female or male?

    Learning Objectives
    • Students will be able to distinguish between sex and gender, and apply each term appropriately.
    • Students will be able to compare and contrast levels of sexual determination.
    • Students will be able to critique societal misrepresentations surrounding sex, gender, and gender identity.
  • Training future faculty map

    Training future faculty in 30 minutes a week: A modular framework to provide just-in-time professional development to...

    Learning Objectives
    TAs will be able to:
    • design small classroom activities
    • design fair quiz and exam questions
    • use rubrics to grade assignments fairly and in a timely manner
    • offer constructive, actionable feedback on student written work
    • compare and contrast context-specific strategies for dealing with student problems
    • compare and contrast context-specific time management strategies
    • discuss the importance of diversity, evaluate their own implicit biases, and discuss how these could impact their teaching
    • compare and contrast different methods of summarizing teaching experience on job application materials
    • evaluate their teaching in a reflective manner to develop future teaching goals
  • Modeling the Research Process: Authentic human physiology research in a large non-majors course

    Learning Objectives
    Students will be able to:
    • Read current scientific literature
    • Formulate testable hypotheses
    • Design an experimental procedure to test their hypothesis
    • Make scientific observations
    • Analyze and interpret data
    • Communicate results visually and orally